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I. INTRODUCTION 

Reported below are the results of a study carried out at the Center for Communications 

and Signal Processing Research at the New Jersey Institute of Technology between May 

1, 1993 and July 31, 1994. This research is a continuation of previous research performed 

during similar periods in 1991/92 [1] and 1992/93 [2]. The aim of the research is to further 

widen the investigation of the bootstrapped algorithm to possible applications solving real 

system problems. 

Historically, the idea of the algorithm as a way for canceling interferences was first pro- 

posed by the principle investigator in 1981 [3], and later it was used for canceling cross- 

polarization in satellite communication [4] and in the microwave terrestrial radio link [5 - 

7]- 

The bootstrapped interference canceler is principally composed of two separate cancelers, 

each using the output of the other canceler as its reference (desired signal) input.  In fact, 

such a structure performs as a "Signal Separator" rather than an interference canceler. Since 

for its operation there is no need for a reference signal, it is sometimes justifiably called a 

"Blind Separator." 

Three different structures were proposed in [1]; namely, the Backward/Backward (BB), 

the Forward/Forward (FF) and the Forward/Backward (FB). They are depicted in Figures 

1, 2, and 3. The different weights of these two-input/two-output separators can be controlled 

by minimizing the output power or minimizing the absolute value of the cross-correlation 

between the two outputs. 

During the 1991/92 phase of the research [1], the steady state behavior of these separa- 

tors was evaluated. The effect of additive noise on the performance of the separator was also 

examined. It was shown that extension of all three structures to multi-input/multi-output is 

possible. Therefore, it was expected that applications to multi-user Code Division Multiple 



Access (CDMA) or neural networks is feasible. Only some preliminary work on the appli- 

cability of the algorithms was performed during this phase of the research and some results 

were presented. In particular, emphasis was put on the use of the three structures in han- 

dling a dually-polarized signal. Error probabilities of the bootstrapped cross-pol cancelers 

for M-ary QAM signals were examined. Their performance was compared with other kinds 

of cancelers known in the literature. 

It was concluded at this phase of the research that the bootstrapped algorithms have 

many useful properties which make them excellent candidates for use as signal separators 

or interference cancelers when other algorithms have difficulties. In some cases, they clearly 

outperform other algorithms. In particular, it was demonstrated that the algorithm has the 

property of converging to its steady state, where signal separation occurs, much faster than 

other algorithms. Unlike other algorithms, the speed of convergence does not depend on 

the signals' power ratios and, hence, does not depend on the eigenvalue spread of the input 

correlation matrix. 

The 1992/93 phase of the research [2] was aimed toward further analysis and evaluation of 

the performance of these algorithms. Inherently, the three structures exhibit different levels 

of complexity, particularly when used in very high frequencies, as in microwave communica- 

tions. They also present different delay paths to signals and, hence, have different system 

bandwidths. Performance studies in this regard show the existing complexity-bandwidth 

trade off. The question of stability of the steady state was also examined. Two ways of 

real-time realization were proposed. One uses orthogonal perturbation sequences, while the 

other implements weight dithering with PN sequences. 

Further work on delay controlled structures, which began in 1991/92, was continued 

in 1992/93. The work showed, in particular, that such a structure performs simultane- 

ous spatial separation and direction-of-arrival estimation of wideband sources. With multi- 

input/multi-output applications, we obtained new results in blind separation of signals when 



the environment is dispersive. 

Some preliminary results were also obtained in applying these algorithms to separation 

of co-channel CDMA signals, as well as blind channel equalization. 

Besides some issues of implementation, during the current phase of research (93/94) 

we concern ourselves with two separate directions of application: separation of multi-user 

CDMA signals and blind equalization of dispersive communication channels. Some neu- 

ral network-type convergence studies were also performed. For each of these applications, 

system structures and block diagrams are suggested. Simulations are performed to prove 

applicability of the systems proposed. Some software modules were prepared to integrate 

the software in the Signal Processing Workstation environment. 

Section (2), below, is a technical summary of the study performed during this research 

and its results. Detailed reports on which this summary is based are given in the appendices 

of the document. Each appendix covers a specific part of the research and is written in a 

way that can be read independently of the other parts. Section (3) contains the conclusions 

and recommendations for further studies. 



II. TECHNICAL SUMMARY 

2.1 Issues Concerning the Implementation of the Algorithms 

The multi-input, multi-output structure of the bootstrap algorithm was considered in [1] 

(Appendices E and F). In Appendix G of [2] the performance of the backward/forward 

structure when it separates multi-signal composites in a multi-channel dispersive environ- 

ment, is discussed. Further results for implementing these algorithms are given in Appendix 

A of this report. 

In the first part, entitled, "Fast Decorrelation Algorithms for Signal Separation" the for- 

ward/forward structure of the bootstrapped algorithm, termed "decorrelation algorithm," is 

suggested for the separation of an unknown linear combination of source signals. The Steep- 

est Descent (LMS) and Recursive Least Square (RLS) versions of the algorithm are consid- 

ered. The results are compared with those of the conventional LMS algorithm, wherein, in 

contrast to the decorrelation algorithm, known references of the signal are assumed avail- 

able. In particular, it is proved that the decorrelation algorithm exhibits a smaller eigenvalue 

spread and hence converges faster than the conventional LMS. In this study, the observation 

xm{t) is taken as a linear combination of the input sources, such that, 

TV 

*m(t) = E E ^mn&PV^M*) + "{*), (l) 
i    n=l 

for I < m < N. &W 6 {-1,1} is an information symbol bit of the n-th source at the i-th 

time interval. The information symbols are assumed to be statistically independent and 

equiprobable. hn(t) is the received pulse signature associated with the n-th source. The 

energy of hn(t) is normalized to 1, i.e., |0
Ts hn(t)dt = 1 and £n is the energy of the received 

signal from the n-th source, assumed orthogonal. Cross-correlations between the sequences 

are included in the matrix A. v{t) is (possibly correlated) additive Gaussian noise. It is 

assumed that A is strictly diagonal dominant, i.e., | AVJ |> £ I A{j | with this assumption A 

is invertible. The coupling fixed parameters amn are not known. The received signals after 



match filtering and sampling may be represented by the vectors: 

x = AEb + v, (2) 

where A is the mixture matrix, E is a diagonal matrix, diagE = [V^i", • ■ •, v6v| > and b = 

[&!,..., bN]T is the vector of information bits. The time superscript has been dropped since 

the decision on 6W requires observation of signals during that interval only, thus b represents 

the vector of information bits at any time. The vector v consists of independent samples 

of zero-mean Gaussian noise with the covariance matrix E [vvT| = CT^G, where G is the 

known matrix of the noise cross-correlations between the outputs of the matched filter. 

Clearly, the minimum square error criterion leads to the Wiener solution for the weight. 

The corresponding algorithm for controlling the weight is given by 

wn(Jb) = (I - ßx(k)xT(k))wn(k - 1) + ßbn{k)x{k), (3) 

where bn(k) = sgnyn(k) is the decision at the n-th output yk. 

It was also shown that the criterion for output decorrelation can be obtained by mini- 

mizing the cost J = w^X;Wn where Rb-X = E[foc ] under the constraint that wnn = 1. The 

corresponding algorithm for controlling the weight is given by 

wn(fc) = fl - B(k)xT{k)} wn{k - 1), (4) 

where B = (I - unii£)& and un is a unit vector with the n-th element equal to 1. From 

comparing (3) and (4) it was possible to deduce that the eigenvalue spread of the first 

algorithm is larger than that of the second. Simulation results of learning curves are given 

in Fig. 1 and Fig. 2 of Appendix A, part 1. Shown in Fig. 3 and Fig. 4 is an estimate of 

the convergence region using a 7 factor defined by 7 = 1 -Pcf/Pd, where pc} and pci are the 

final and initial probabilities of error. 

In conclusion, this study showed that the LMS decorrelator algorithm is faster than the 

LMS error algorithm due to a smaller eigenvalue spread.   We introduced a new RLS-type 



algorithm for decorrelation. The RLS decorrelator was shown to be faster than the LMS-type 

algorithms and of comparable speed with the conventional RLS error. Regions of convergence 

for the LMS decorrelator and the RLS algorithms were shown to be wider than those of the 

LMS error algorithm. 

In the second part of Appendix A entitled "Adaptive Detectors for Multi-Channel Signals 

in Code Division Multiple Access System," both the feedforward and feedback structure are 

considered for implementation in CDMA systems. However, an assumption was used that 

at the output of the bank of matched filters, regularly implemented in this application, the 

cross-correlation matrix A = A,-j is unknown. This fact might be cause by the unknown chan- 

nel effect. Nevertheless this fact lead to a problem model similar to that of the previous part 

of the appendix. Four adaptive detection criteria are considered: two each for the forward 

structure using MSE and decorrelating. The other implements feedback structures, again 

with MSE and decorrelating. The optimal weights for all these algorithms and structures 

are found. Error probability is used as a performance measure for comparison. It is shown 

that the feedback minimum square error has the best performance in terms of probability 

of error. This might be due to the fact that in the MSE we assume the availability of a 

reference as well as a noise-free case. 

2.2 Application to Signal Separation of Multi-User CDMA Signals 

In this section we concentrate on signal separation of a multi-user detector for CDMA a 

system. For such a system, the receiver signal is given by 

k 
r(0 = E E h(i)yfiksk(t - iT - Tjfc) + n(t), (5) 

k=l    i 

where bk(i) £ {-1, +1} is the k-th. user data bit in the z-th time interval, sk(t), k=l, ...,K is 

a unit energy signature waveform of duration T assigned for each of k different users. n{t) 

is a zero-mean white Gaussian noise with the two-sided power spectral density N0/2, and 

ak and rk are the received energy and relative delay of user k.   The energy ak is assumed 



unknown, particularly due to fading. 

If r(t) is the signal received at the main station (uplink) then rk might be different for 

different users. Though it is unknown, sometimes it is assumed to be estimated by a separate 

process. If, on the other hand, r(t) is the received signal at a single-user location (downlink), 

then rk=0 for every k and the signal is considered synchronous. 

2.2.1 Adaptive Separation of the Synchronous Multi-User CDMA Signal 

The model for this signal separator is given in Figure 4. Some variation to this scheme will 

be discussed in the sequel. Since r^=0, k=l, ..., K then one can show that vector x, after 

the matched filters, is given by; 

x{i) = PAb{z) + n(i), (6) 

where x= [si,..., z/r], b=[&i,..., bK], A - diag(v/aT,..., v/ö^) and n=[«i,... ,nK}. The 

kj—ih element of the symmetric cross-correlation matrix P is defined as 

Pkj    =    I   sk{t)s3{t)dt   k,j G (1,2, .../O (7) 
Jo 

nj   =    /    Sj(t)n(t)dt 
Jo 

Pkk   =   I- (8) 

The covariance matrix of the zero Gaussian noise vector n is given by (iV0/2)P. 

Multiplication by P_1 (assumed known) leaves vector z having uncorrelated signals 

z = Ab + £, (9) 

where £ = P-1n. 

At the canceler output we generate an output yk by multiplying a function of Z{ by 

weights Wjk and subtract the result from xk. Therefore, in vector notation 

Y = X-WT/(z), (10) 



where 
"0       w12    ...    wlK 

w21       0      ...    w2K 
W = 

. WKl     WK2     ■ ■ ■     ™KK 

The steepest descent algorithm is used to minimize the output signal power E(yl): 

d 
wfc<-wfc + /K—£(2$, (11) 

where w^ is the k-th column vector of W. 

Note that since Zj, j = l, ... K (j^ k) contains, besides the data bj, a noise component £j, 

the error performance at the output will depend strongly on SNR's at Zj. This is exactly 

what is known as power inversion behavior inherent in LMS and minimum pole cancelers. 

To improve performance sgnzj is used instead of Zj. Particularly when SNR at Zj for all j 

are high, the canceler will perform at its best. 

In Appendix B, Part I, we analyze the separator depicted in Figure 4; we derive the 

optimal weights and then use them to calculate the probability of Pek at the &-th output as 

a function of cross-correlation vector pk is a column vector obtained from P by deleting the 

element pkk- 

For the two-user case, we show in Figure 5 the probability of error of user 1 as a function 

of SNR2 — SNRY with p=0.7 and SNR1=8dB. For comparison the probability of error at 

the output of decorrelator is also shown. As expected for high SNR2 the estimate of b2 

from z2 is almost perfect and the canceler performs at its best (ideal separator). For a very 

low SNR2 — SNRi the error at ?/i is better due to low interference at x, the output of the 

matched filter. 

Figure 6 depicts the error probabilities when all (K-l) users except user 1 maintain the 

same SNR{. Gold codes are implemented in this figure and K was taken to be 2 to 5. 



2.2.2 Adaptive Separator of a Synchronous Multi-User CDMA Signal 

with Soft Decision 

As stated in the previous section, the signal separator of Figure 5 performs better at 

high SNRl - SNRi and at low SNRi - SNRi. Using a hard decision (Signum function) at 

low SNRi is not advised, due to a higher error in estimating the interference. This suggests 

using a soft decision instead. With this we have 

yk = xk- w£hk, (12) 

where 

,     = ( 
ziiXi*      I z> l< T}* (13) 

1   sgn(zi)   otherwise. 

The value of Xik is determined heuristically from observed values of decorrelator outputs 

as 

Xlk = Plk   E{\Zl\)   ■ (    } 

In Appendix B, Part II we analyze this separator, we derive the optimal weights and use 

them to calculate the probability of pek at the fc-th output. In Figure 7 we show the prob- 

ability of error of user 1 as a function of SNR2 - SNRX with p = 0.7, SNRX = 8dB for 

the two-user case. More results are also shown in this appendix. For comparison we also 

add to this figure the performance of the decorrelation and the canceler with a hard limiter. 

It is easy to recognize that using a soft limiter improves performance for almost all SNR2. 

Particularly noticeable is the improvement at a low SNR2 value, where the hard limiter 

results in poor performance. 



2.2.3 Adaptive Separator of Synchronous Multi-User CDMA Signals 

Using the Bootstrapped Decorrelating Algorithm 

Here, instead of using an algorithm that minimizes the output signal power E(yl) (see 

equation 11), we use a steepest descent algorithm, which simultaneously reduces the absolute 

value of the correlation between the output yk and the decision on all other outputs, i.e., 

wfc <-Wjt- iiE{ynsgn(yk)}. (15) 

This is what we referred to in the previous report as the forward/forward bootstrapped 

algorithm. In Figure 8 we depict the block diagram of this separator. For obtaining the 

optimal weight one has to solve a system of nonlinear equations. However, if we assume the 

signal-to-noise ratio at the output is such that the main contribution to the output error is 

due to multiuser interference, then we can use the following approximation: 

E(yksgnyk) ~ E(ykbk)(I - 2Pek), (16) 

where Pek is a diagonal (K — 1) x [K — 1) matrix whose elements are Pej, j^ k = 1, 2, ... 

K — 1, K + l,K. This approximation changes the nonlinear system of the equation to a 

tractable linear system. In Appendix B, Part III we present analysis of this separator, we 

derive the optimal weights, then we calculate the probability of error. In Figure 9 we show 

the results of this separator for the two-user case. 

2.2.4 One-Shot Adaptive Separator of an Asynchronous Multi-User CDMA 

Signal 

Different from the synchronous separator, some or all rk in (5) are non-zero. However, we 

will assume them to be known. Without loss of generality we concentrate on bit 0 of user 1, 

and assume that 0 = rx < r2 < ... < rk < T. The sampled output of the matched filter for 

10 



user 1 is then 

K 

Xl(0) = y/^hiO) + E^k^(-l) + Pikh(0)} + m(o). (17) 
fc=i 

The normalized partial cross-correlations pkx and p^ for k = 2 ,... , K are 

Pki   =    f   s1{t)sk{t + T-Tk)dt (18) 
JO 

Pn   =    I   sx{t)sk{t-Tk)dt, (19) 
Jo 

and 

m(0) =  /   n(t)Sl(t)dt 
Jo 

is a zero-mean Gaussian random variable with a variance of N0/2. In matrix notation: 

Xl(0) = y^&i(0) + p\ Abx(O) + ni(0), (20) 

where A = 
Ai     0 
0     Ai 

, Ai = diag [v^, ...v^], b2(0)= [b2(-l), ..., bfc(-l), b2(0), ... bK(0)] 

and p!= [ P2i,— p2\, Pi2, ■■, Pik ]• The separator forms an estimate of the multiuser interfere 

as the weighted vector of tentative decisions on symbols that interfere with &i(0) directly, 

and subtracts it from the matched filter output. 

Except for the large dimension of the weighted vector, the canceler section is the same as 

in the synchronous case. Obviously, depending on rfc, the vector pk will change the relative 

powers in the current and previous bits of the interferers and so the performance of the 

canceler. 

In Appendix B, Part IV we present, some analysis and results, primarily with two users 

of this separator. Figure 10 shows the probability of error of use 1 versus SNRi for the two 

asynchronous users. The relative energy is defined as £2s\{i)dt. For comparison we add to 

this figure the conventional single-user detector and the single-user bound when interference 

is absent. 

11 



2.2.5 Adaptive Bootstrap Decorrelator for Multi-User CDMA in an Asynchronous 

Unknown Channel 

In any of the previously discussed adaptive separators, the principle idea is that of using 

a bank of matched filters at the input of the receiver. If the users are synchronous and 

the codes are known, then besides noise, the outputs of the filters contain a known mix of 

the different users' bits. This mixture depends on the cross-correlation of the codes. Linear 

transformation on these outputs with the inverse of the cross-correlation matrix will generate 

outputs that contain a separate signal (decorrelator). The separation is inadequate because 

of the high noise contamination. A tentative decision followed by an adaptive canceler did 

the job of reducing the interference at the output of the matched filter without having high 

noise. 

If on the other hand the users are asynchronous but the relative delays and the codes are 

known, then the one-shot approach will again generate a known mixture at the outputs of 

the bank of the matched filter, which corresponds to each user bit 0 (for example) and bit 

(0) and bit (-1) of other users. Again, linear transformation by the inverse of this generalized 

cross-correlation matrix will result in an output with uncorrelated signals. Then, as before, 

a tentative decision followed by an adaptive canceler will do the job. 

For the asynchronous unknown relative delay r^, the mixture at the outputs of the 

matched filters are unknown. This is also the case if rfc's are estimated by some process, then 

there will be some estimation error. For these cases we suggest using the bootstrapped algo- 

rithm for decorrelating the outputs of the matched filters. Such a decorrelation is proposed 

in Appendix B, Part V. 

The principle operation of this decorrelator (see Figure 11) is weighting the outputs of the 

matched filter by a matrix W, the same as in (10), while the next and previous bit by upper- 

and lower-triangular parts of the other matrix W, that is, a total of 2(K-1) weights for each 

user output (total of 2K(K-1)) weights.   The adaptive algorithm then controls the weight 

12 



matrices W and W to reduce the absolute value of the correlation between the decorrelation 

output ym(i) and all other outputs of the decorrelator (after decision) at time r, i-1 and i+1 

respective!}'. The weights wmk and w~mk for 1 j K, m < K, a / m are controlled. 

Wmk    <-   wmk + l*E(ym(i)sgn(yk{i))) 

Wmk    <-   Wmk + ßE(ym(i)sgn(yk(i- 1)))    k > m 

wmk    «-   wmk +fJ,E(ym(i)sgn(yk(i + 1)))    k < m. (21) 

Note that for the two-user case K=2, there are 4 weights, w12, w2\-, Wi2 and w21. 

In Appendix B, Part V we present a more detailed analysis of this decorrelator. Par- 

ticularly for the two-user case, we found the optimal weight and use it to derive the error 

probability of user 1 at the output of the decorrelator. This appendix also contains some 

simulations and analytical results, and compares them to the results obtained with the one- 

shot, when rk is known. 

2.2.6 Convergence and Stability Analysis of the Adaptive Separators 

In Appendix B, Part VI we consider the question of convergence of the weight control 

algorithm to the optimal value. Although this is done for the synchronous case when the 

algorithm minimizes the output power, the derivation can be extended to the decorrelation 

algorithm with appropriate linearization. Extension includes the possibility of the one-shot 

asynchronous case. This study concludes with a condition on the learning rate ß. 

In summary, we presented in this section two approaches for adaptive separation of multi- 

user CDMA signals, and we show their performance in terms of error probability. All these 

separators are blind cancelers, since they only use the received signal without the help of 

training signals. Some of the algorithms used a fast algorithm; others are minimum power 

algorithms whose performance is enhanced with tentative predecisions. 
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2.3 Blind Equalization of Dispersive Communication Channels 

In digital communication the need for blind equalization arises when the channel is un- 

known to the receiver, which attempts to estimate a sequence of transmitted data without 

resorting to the use of a training sequence. The main problem of blind equalization is that of 

finding an appropriate cost function (or equivalent error function) that reflects the amount 

of intersymbol interference (ISI) introduced by the channel, and which does not involve the 

transmitted symbol. Optimization of the cost function should lead to minimization of the 

ISI. Many researchers dealt with blind equalization and the ill convergence problem, which 

was treated with modifications suitable for the case, but with extra complexity. 

The main emphasis of their research is on the linear equalizer structure. Another very 

important structure in digital communication, the decision feedback equalizer, receives less 

attention. 

As part of our current research effort, we suggest, implement and study of the boot- 

strapped decorrelation algorithm in conjunction with decision feedback equalization. An- 

other topic of blind equalization considered in this phase, although not related to the decor- 

relation algorithm, is the "Anchored Blind Equalizer using the Constant Modulus Algorithm" 

for improving performance. 

These two topics belong to a larger class of symbol-by-symbol equalization. The second 

topic involves maximum likelihood sequence estimation (MLSE), where the Viterbi algorithm 

(VA) is used to search a trellis for the desired sequence. The blind maximum likelihood 

(ML) sequence estimation problem is discussed in section 2.3.3 and the corresponding part 

of Appendix C. Here the linear dispersive channel model is assumed unknown, but it has 

quantized parameters. A channel trellis and a data trellis are defined to search for the ML 

channel and data estimates using the Viterbi algorithm. The approach provides a good 

performance/complexity tradeoff. 
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In contrast to symbol-by-symbol estimation, maximum likelihood sequence estimation 

has a lower error rate at the expense of complexity. The complexity of the VA grows ex- 

ponentially with the length of the channel response. When the impulse response becomes 

larger, the VA becomes impractical, and methods for complexity reduction are needed. In 

section 2.3.4 and in the corresponding part of Appendix C, we present a new method of 

complexity reduction of such an equalizer. 

2.3.1. Blind Decision Feedback Equalization Based on Decorrelation 

The structure of such an equalizer is shown in Figure 12. The cascade of the transmit channel 

and receiver filters is modeled as an FIR filter with impulse response 

h{n) = l+Y,hJ(n-i), (22) 
i=i 

where <$(•) is the kronecker delta.   It is also assumed that the input Ik is a binary white 

sequence with a zero mean. The output of the channel is thus given by 

xk = lk + jrhilk-i. (23) 
i=i 

Clearly the post-cursors (hi,h2, ...,hN) introduce ISI. The estimated data Ak is produced 

by passing Ak through a slicer. The input to the sheer of the decision feedback equalizer Ak 

is given by 

Ak   =   Ife-AViW 

=   Jfc + lUH-AWW, (24) 

where Afc_! is the vector of the past N decisions A'fe_i=[^fc-i, Ak-\, ■ ■ ■, Ak-N] (the prime 

stands for transpose) and Ik_x is the vector of past transmitted information bits I'fc_i = [ 

!*_!, Ik-2,...,h-N ], where /*_,- G { -1, 1 } and P{/fe_,- = 1} = P{I*_i = -1} = 1/2. W 

and H are the equalizer and channel parameter vectors, respectively; W = [wi,w2,. ■ ■, wN] 

and H' = [hi, h2, ■.., /IN"]- 
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A decorrelation algorithm which uses AkAk„i as an error function adaptively controls the 

equalizer weight according to 

W: w1+nAkAk-i   i = l,2,...,N. (25) 

In a practical implementation one would replace the expectation by the current realiza- 

tion, leading to a stochastic difference equation. 

For ideal ISI cancellation, the sheer's input Ak = Ik, and therefore sequence { Ak } will be 

decorrelated, i.e., AkAk-i =0 for n=0. In other words, decorrelation is a necessary condition 

for ideal cancellation of ISI. In order to be able to use the decorrelation of the sheer's input as 

a criterion for controlling the feedback weight vector W, one must prove that decorrelation 

is also sufficient for cancelling ISI. This is done in detail in Appendix A, Part I. Simulation 

performed on different channel models showed convergence to the desired values of weights, 

and hence ISI cancellation. It was also shown that the decorrelation algorithm converges to 

the correct weight irrespective of the initial condition. 

Upper bounds and lower bounds on the probability of bit error for the AWGN case with 

a zero mean and a variance of a2, was found. A channel whose transfer function is given by 

H(z-1) = l = 0.8 z_1 + 0.6 z~2 +0.4 z~3, is depicted in Figure 13, these bounds together with 

results of simulation of this channel and the no ISI probability of error are shown for compar- 

ison. Due to the simplicity of the decorrelation algorithm, one could derive a Kalman-type 

decorrelation blind equalizer, which increases the convergence substantially. This is included 

in Appendix C, Part I. 

2.3.2 Anchored Blind Equalization Using the Constant Modulus Algorithm 

As stated earlier, most algorithms for the blind equalizer in the literature use a non-convex 

cost function that possesses local minima to which the equalizer may converge. Some of these 

equilibria may be undesirable, i.e., they will not be able to remove ISI. For these algorithms, 

1(3 



equalizer initialization becomes an important issue. Verdu showed that anchoring (setting 

the first coefficient to one) will result in global convergence. Verdu used the minimum energy 

(ME) as a cost function. An important algorithm developed by Triechler is the constant 

modulus algorithm (CMA) which, like the others, suffers from ill-convergence. In Appendix 

C, Part II, we suggest an anchored constant modulus algorithm (ACMA) for the linear and 

decision feedback blind equalizers (see Figure 14, for example). 

Detailed analysis of this algorithm is given in this appendix for equalizing auto-regressive 

channels and moving average-type channels. It is shown analytically and through simulation 

that the algorithm converges successfully if the unknown channel gain exceeds a certain value 

(l/\/3). The controlled weight will fail to converge to the desired value if the channel gain 

drops below this value. This problem can be minimized if we introduce a gain in front of the 

equalizer. In comparing the ACMA to that of AMEA we notice that the former converges 

faster than the latter. With AMEA we notice that the former converges faster than the 

latter (see Figure 16). The AMEA, however is showing no ill convergence for a small g, but 

like the ACMA rate of convergence, it decreases with decreasing g. 

2.3.3 Blind Maximum Likelihood Sequence Estimation 

For sequence estimation of digital data in the presence of intersymbol interference, both the 

data and the channel might be considered unknown. To facilitate the proposed approach 

of this research, we assumed a quantized channel. This is justified in practice since a finite 

precision processor is used to implement the algorithm. Two trellises are developed; one 

for the channel and the other for the data. The VA is used to search for the ML channel 

and data sequence estimates. The output of one trellis is fed into the metric calculator of 

the other. The resulting scheme offers a considerable reduction in computational complexity 

compared with other methods available in the literature, and prevails with regard to the 

complexity/performance tradeoff. 
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The sampled output of the channel, rk at instant fc, is given by 

rk = TI'kh + nk, (26) 

Ifc = [Ik, h-i, • • •, h-i]f , h — [ /io, ^i, ■ • •, /ILK 
an(l {^i }^=o is the sampled impulse response 

of the cascaded transmit channel and receiver filters are assumed to be slowly time varying. 

{Ik-i} is the sequence of transmitted symbols; assumed to be iid random variables whose 

values are {±1, ±3,..., ±(M — 1)} with equal probability, and {n/J is an additive white 

Gaussian noise sequence. 

For the blind equalization problem at hand, we consider the conditional probability of 

the received sequence r given the transmitted sequence and the channel impulse response. 

With all channel realizations equally probable, the joint ML estimate for the data sequence 

1ML 
aud the channel parameter h^z, is given by 

(IML^ML) = argmax/r|Ijh(r|I,h), (27) 

wherein the maximization is carried over all possible h and I. /r|l,h(- I "? •) is the conditional 

probability density function (pdf) of the received sequence r. Such a problem is not trivial 

since h is continuous and I is discrete. 

The channel parameters are approximated by discrete values from the infinite alphabet 

{0, ±c, ±2c,... }, where c can be chosen as arbitrarily small. The corresponding channel 

trellis will have an infinite number of states. However, since the channel vector h does not 

vary over each signal interval, we need not consider all its possible levels at a given instant. 

We proposed a simple assignment scheme for the channel trellis. The next channel estimate 

h4+1, is given by 

ht+1    =   h''   for state 0, and 

hJ+1    =   h2 ± cln    for state n = 1,2,..., 

where ln is a vector of length L, whose elements are either 0's of l's. 
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A smaller number of states can be used if the vector ln is restricted to be all zero, except 

for the element at ihen-th location to unity. This assignment results inL + 2 states. There 

are other schemes, up to 2L+2 states, but the above assignment will result in a simple trellis. 

In summary, the algorithm would proceed as follows: 

1. Start with initial channel estimate, h°, 

2. Use the VA to solve for IML = argmaxi/(r|I, WL), 

3. Use the VA to solve for &ML = argmaxh f{r\lML,^ML), 

4. Iterate 2 and 3. 

The algorithm achieves the ML estimate of the channel by incrementing or decrementing 

the previous estimate. In each transition only one channel parameter is changed. To improve 

the speed of convergence one can include more states in the channel trellis, which allows 

for changing two or more parameters at a time, at the expense of complexity. Thus, one 

can compromise the rate of convergence for complexity. The step parameter c affects the 

performance. Choosing a smaller c will reduce the rate of convergence, but it will improve 

the error rate. 

The algorithm described above was used to equalize the channel (assumed unknown) 

whose sampled impulse response is given by 

h(n) = 0A05S(n) + 0.817% - 1) + 0A076(n - 2). 

For simplicity, binary data is assumed. The channel and data trellises, each having four 

states, are shown in Figure 15. Clearly, using smaller c results in higher complexity but 

better performance. 
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2.3.4 Reduced Complexity Sequence Estimation Using State Partitioning 

As was stated earlier, the maximum likelihood sequence estimator has a lower error rate at 

the expense of complexity. The complexity of the VA grows very fast with the length of 

the channel and or the size of the constellation. Many researchers have been considering 

the problem of reducing state complexity and came out with different proposals. Some of 

these are useful for systems utilizing a larger signal constellation, while others are suitable 

for channels with a long impulse response. We proposed a state reduction method which 

is based on a state partitioning technique, which can handle both a large constellation and 

long impulse response channels. Moreover, it is richer in the possible number of reduced 

states (not only power of M, where M is the alphabet size). Therefore, it enables a more 

flexible complexity/performance tradeoff. 

The discrete time channel model considered here is given in Figure 16. This model arises 

in a quadrature amplitude modulation (QAM) system at the output of a sampled, whitened 

matched filter. The channel h(D) is modeled as a finite response filter (FIR), and n{D) is a 

white Gaussian noise source with a zero mean and variance of a2. The data sequence a(D) 

consists of symbols a^, which are independent and identically distributed. We will assume 

binary transmission here. 

The data symbols a,k take values of ±1 with equal probability. Referring to Figure 17, 

the output y(D) is given by y(D) = a(D)h(D) + n(D), where h(D), given by h(D) = 

h0 + hiD +... + hmDm, defines the channel impulse response, whose degree is determined by 

the channel memory. The state of the system, s(k), at time k is given by (a^_i, cik-2, •, o-k-m)- 

Denote the set of all 2m possible states by £; then 

£ = {si : Si is a state of the system, i = 0,1,... ,2m — 1}. 

In the proposed method, the set £ is partitioned into TV, Si, partitions, where TV is 2 < TV < 

2m, such that 

1. \J&?Si = £(k), 
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2. Si D Sj = 0; the empty set for i / j and 0 < i, j < N — 1, 

3. The partitions Si are chosen such that for all sn(k) € Si, the corresponding next state 

sn(k + 1) must belong to the same partition. 

In particular, the third condition contains the partition in a way that enables a trellis to be 

defined. A procedure was devised in which the partitions satisfy the third rule. Detailed 

information is given in Appendix C, Part IV. 

In this appendix we show how the method can be applied to obtain trellises with 2l 

states as well as trellises with the number of states not 2\ Bounds on the error probability 

of these cases are also found. Applications to non-binary (M-PAM, M-QAM and MPSK) 

modulation are also discussed. Simulations were performed and some results are depicted in 

this appendix. The channel impulse response used was 

h(n) = 0.7107%) + 0.1421% - 1) + 0.2132% - 2) + 0.1421% - 3) + 0.6396% - 4). 

We present in Figure 17 the simulation result and upper bound for different numbers of 

states. As expected with 12- and 14-state trellises, the probability of error is better than in 

the 8-state case. 

III. CONCLUSIONS AND RECOMMENDATIONS 

During this period of research we made significant progress in applying the bootstrap 

algorithm, particularly that based on decorrelation, to two important area: separation of 

multi-user CDMA signals and equalization of dispersive communication channels. 

We laid the ground work for the adaptive separator of a synchronous channel and exam- 

ined the effect of predecisions, hard or soft limiters, on the performance. We also examined 

the use of the decorrelator for this separator. For the asynchronous case we presented the 

adaptive separator based on the one-shot approach, which turns k asynchronous users with 

known relative delay r^ into IK—1 synchronous users. If the relative delays are unknown then 
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this approach can not be used. Instead a special arrangement of the decorrelator algorithm 

is possible. Some preliminary results were obtained using this approach. A convergence and 

stability analysis was also performed, and conditions were established for the synchronous 

separator convergence case. 

Symbol-by-symbol blind channel equalization was also considered. Using the decorrela- 

tion algorithm, inter-symbol interference was reduced. Particularly, for the first time, for the 

decision feedback structure. The approach proves to achieve global convergence in contrast 

to other methods. Some results on anchoring the constant modulus were also obtained. 

For blind maximum likelihood sequence estimation we introduced the idea of quantiz- 

ing the channel response to be able to perform an estimation of the data sequence when 

the channel is unknown. A method of using two simultaneous trellises, one for data and 

one for channel response, was introduced and shown to result in a considerable reduction 

of computational complexity and it prevails with regards to the complexity/performance 

tradeoff. 

We then introduced a method of reduced complexity sequence estimation which can be 

used for both a long channel response and a large constellation. It also provides more freedom 

in number of reduced states and gives more flexibility in design. 

In summary, during this period of research, aside from adding information on issues of 

implementation, we have a vast amount of results in the two main topics of applications. A 

list of pubications resulting from this research is given in Section V. 

The work carried out led us to make a number of recommendations for further study. 

1. Adaptive threshold level for the separators of multi-user CDMA signals 

with soft decisions: 

It was claimed in section 2.2.2 that soft decision improves performance of the syn- 

chronous separator, particularly at a region with a low interference level. The threshold 

level of the soft decision was determined heuristically from the observed values of the 
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decorrelator outputs. We suggest to search for optimum threshold (adaptive) to obtain 

the best performance possible with predecisions, and hence obtain the best separator 

of this kind. 

2. Separator of asynchronous multi-user CDMA signals with uncertainty in 

relative delays: 

Some preliminary results were obtained in section 2.2.4. However, even with the one- 

shot approach, the relative delays rfc obtained from some measurement may contain 

some uncertainty. In this regard: 

• One may want to examine the effects of uncertainty on the performance of the 

separator, 

• Suggest an adaptive structure to reduce the effect of this uncertainty, 

• Examine the possibility of using this adaptive structure for handling the asyn- 

chronous multi-user case with unknown relative delays, and avoid the need for 

separate estimators for finding these delays. 

Preliminary estimation of these problems suggest that the bootstrapped algorithm can 

be advantageous in solving them. 

3. Effect of channel fading and multi-path on the separator's performance: 

All work previously done assumed that the channel was unfaded and slowly varying. 

In reality, channels are stochastic and suffer from fading. Models for these channels 

are needed to examine their effects on performance. This is an important topic for 

extending current results. 

4. Multi-Carrier, multi-user, CDMA separator: 

Especially for a multi-path channel, a complex RAKE receiver was proposed. Multi- 

carrier CDMA turns the wideband CDMA full channel into many narrow band chan- 
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nels. Therefore, multi-path becomes a flat fade of the different narrow-band channels, 

and hence it illuminates the need for a RAKE receiver. Again some preliminary results 

were obtained with this structure. The bootstrap decorrelating algorithm was proven 

to be crucial in its implementation. 

5. Further work on equalization using the decorrelation algorithm: 

For most practical communication channels, the response is an FIR minimum or no 

minimum phase with a post- and pre-cursor. In section 2.3.1 we modeled the channel 

as FIR with only post-cursors and showed that the blind decision feedback equalizer 

can be used successfully with the decorrelation algorithm for the linear equalizer, with 

or without a pre-cursor remained open. More work in this direction is needed. 

6. SPW Modules: 

Further implemention the results of this report with modules of the signal processing 

workstation (SPW) are needed. 
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Figure 1 The backward/backward dual polarization separator. 
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Figure 2 The forward/forward dual polarization separator. 
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APPENDIX A: PART I 

FAST DECORRELATION ALGORITHMS FOR SIGNAL SEPARATION 

by 
Alex Haimovich, R. Manzo and Yeheskel Bar-Ness 

ABSTRACT 

LMS and RLS type algorithms are suggested for decorrelation of multi-channel systems 
outputs. These algorithms act as signal separators when applied to unknown linear combi- 
nations of the inputs. The performance of the suggested algorithms is compared with that 
of the conventional LMS and RLS algorithms that minimize the mean square error. It is 
shown that the correlation matrix eigenvalue spread associated with the LMS decorrelator is 
always smaller than the eigenvalue spread corresponding to the conventional LMS, resulting 
in faster convergence speed for the decorrelator. A new RLS type decorrelator algorithm 
is suggested. The RLS decorrelator is shown to be faster than the LMS decorrelator, not 
affected by the eigenvalue spread, and comparable in speed with the conventional RLS al- 
gorithm. Convergence analysis by simulation shows that the RLS algorithms and the LMS 
decorrelator have wider regions of convergence than the conventional LMS. 

I. INTRODUCTION 

The separation problem addressed in this paper is the recovery of unknown independent 
sources from observations of a linear mixture of the sources. We are concerned with a 
multi-channel input multi-channel output system where each output is an unknown linear 
combination of the inputs. This type of problem arises in numerous applications such as 
canceling cross-polarization interference in dual polarized systems, detection in multiple 
access communications systems, and separating multiple speech signals, to name a few. 

One approach to signal separation is to view it as an interference cancellation problem. 
The signal-to-noise-and-interference ratio at each output channel is enhanced by suppressing 
the co-channel interference. When a reference signal is available, the mean square error 
(MSE) between the output and the reference signal is minimized by the classical Wiener 
filter, which can be implemented using steepest descent algorithms such as the LMS and 
RLS. For example, the LMS algorithm, operating as an interference canceler, has been 
suggested as a separator of cross-polarized signals [1]. 

Begining with the early eighties [2] a class of signal separators have been proposed that 
in effect estimates the parameters of the mixture between the sources. A detailed steady 
state analysis of three cross-coupled "noise cancelers" structure can be found in [3]. This 
research was aimed mainly for communication application such as satellite and digital mi- 
crowave dually polarized links. It assumed that the signals to be separated are uncorrelated 
and showed separation, provided that "some knowledge" is available by which the signal can 
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discriminated. Later the same separator structures were suggested for application to neural 
networks [4]. Their algorithm for separation, however, assumed the signals to be statistically 
independent and therefore the recovered signals should be statistically independent. While 
it is difficult to devise criteria for testing statistical independence, it is possible to design 
cost functions for decorrelation between outputs. Independence cannot be achieved directly, 
but it can be approached by minimizing higher order cross-moments by way of gradient 
stochastic algorithms with costs defined by non-linear functions of the outputs [5]. These 
signal separators are derived from criteria different than those of the interference cancelers, 
furthermore, they do not require a reference signal, hence belong to the class of blind separa- 
tors. Their operation suggests a bootstrap process where cross-correlations of the outputs, 
or of functions of the outputs, are used to control feedforward, or feedback, filter weights. 
Simulations have shown that LMS decorrelating algorithms are faster than LMS algorithms 

minimizing the mean square error [6]. 
In this paper we compare various signal separation algorithms based on the MSE and 

decorrelation criteria. The model and examples reflect a multi-user communication system 
such as CDMA. Each user transmits an assigned unique waveform modulated by BPSK 
data. The waveforms are assumed orthogonal and the mixture of the signals arises due to 
the channel effects such as crosstalk and dispersion. The main contributions of the paper 
are: (1) prove that the eigenvalue spread associated with the LMS decorrelating algorithm is 
smaller than the spread associated with the LMS, thus providing an explanation for results 
previously reported regarding the speed of convergence of the LMS decorrelating algorithm, 
(2) introduce a new decorrelating RLS type algorithm. 

The system model is presented in Section . In Section we define separation criteria and 
based on them compute expressions for the steady state weight vectors. Adaptive algorithms 

and the con 
rgence analysis of the LMS decorrelator are developed in Section .  In Section   the various 
algorithms are compared by computer simulations. Conclusions are provided in Section . 

II. PROBLEM STATEMENT 

Consider the communication of N sources through N channels. We make the following 
basic assumptions: 

1. The sources are independent. 

2. The outputs of the channels consist of a linear mixture of the inputs. 

3. Number of inputs is equal to the number of sources. 

The observation signals xn (t) are linear combinations of the input sources, such that: 

N 

i    n=l 

for 1 < m < N. feW £ { — 1,1} is the n-th information symbol bit at the z-th time interval. 
The information symbols are assumed to be statistically independent and equiprobable. 
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hn (t) is the received pulse signature associated with the n-th user. The energy of hn (t) is 
normalized to 1, i.e. jjs hn (t) dt = 1, and £n is the energy of the received signal from the 
n-th user. Cross-correlations between the sequences are included in the matrix A. v (t) is 
(possibly correlated) additive Gaussian noise. The coupling fixed parameters amn are not 
known. The received signals after match filtering and sampling may be represented by the 

vectors: 
x = AEb + v (2) 

, and where A is the mixture matrix, E is a diagonal matrix, diag E = [v£T, • • •, V6v 

b = [bi, • • •, bN]T is the vector of information bits. The time superscript has been dropped 
since the decision on 6(i) requires observation of signals during that interval only, thus b 
represents the vector of information bits at any time. The vector v consists of independent 

sample 
mean Gaussian noise with covariance matrix E [vvT] = a2G, where G is the known matrix 
of the noise cross-correlations between the outputs of the match filters. 

III. SIGNAL SEPARATION CRITERIA 

Two signal separation criteria are considered: the Mean Square Error (MSE) separation 
and the signal decorrelation criterion. The criteria are used to develop control algorithms 
for the network weights. We will consider separation of the n-th user signal from the rest of 
the signals, other channels being treated similarly. To yield the n-th user ou 
put yn, the input vector x is applied to the adaptive filter represented by the N X 1 col- 
umn vector wn. For BPSK transmission a sign test can be used for detecting the data bit: 

bn = sgnyn. 

3.1 MSE Separation 

The MSE signal separator minimizes the mean squared error between its output and a 
reference signal. Typically the reference is initially supplied by a training signal. When the 
adaptive weights converged and the errors with respect to the training signal are small, the 
detector is switched to operate in decision directed mode, with the reference signal being 
supplied by the estimated symbol. The MSE signal separator is in effect the optimum linear 
detector for the n-th user. It acts as a canceler for the co-channel interference from the other 
users and minimizes the error between the reference signal and the output yn. In decision 
directed mode the reference signal is supplied by the estimated data symbol, hence we have 
e (k) = bn (k)-yn (k) . The MSE is defined e = E [e2 (k)]. In the following we drop the explicit 
time dependency since signals are assumed stationary. The steady state weight vector for 
separating the n-th user signal is given by the well known Wiener-Hopf equation, 

wn = R^r, (3) 

where R^-  = E T XX is the input correlation matrix, and r-g- x = E 6nX Jn is the cross- 

correlation between the input and the estimated symbol. We will show that in the absence 
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of noise the MSE criterion indeed leads to signal separation.   When the input vector x is 
given by the model in equation 2, the input correlation matrix can be written 

The cross-correlation vector is 

Rr AEE bbT EAJ 

AE2AT (4) 

\x   =   E[MAEb + *) 
= AEu„. (5) 

where un is a unit vector with the n-th element equal to 1. To make the analysis mathemat- 
ically tractable it is assumed that in the decision directed mode correct decisions are made 
with high probability such that E Kb un, and in general E bb   =1, where I   is the 

identity matrix. From , (4) and (5) the weight vector w„ is equal, 

w„= A-JE TTTI-1 ur (6) 

The information bit is recovered when this weight vector is applied to the noiseless data: 
yn = w^x = u^E^A^AEb = bn. 

3.2 Decorrelation Signal Separation 

The decorrelation separator is different from the MSE separator. The MSE weight vector 
for any user is controlled by the error derived solely from the output corresponding to that 
user. In contrast, the decorrelator weight vector is controlled by all the channels' outputs. 
Suggesting an operation where each channel is helped by the other channels this structure 
has been referred to as bootstrapped [6]. The decorrelator seeks to decorrelate the output 
yn from a set of reference signals which represents the other users' symbols. Operating in a 
mode similar to the decision directed mode, decorrelation is achieved when 

E ynb £-T). U-r (7) 

where cn is a constant. When condition (7) is met, yn is decorrelated from all components 
of b other than its own bn. First we will show that in the noiseless case this criterion indeed 
leads to signal separation, then we will define and optimize a cost function to compute the 
steady state decorrelating weight vector. 

Vr, E wjAEbj b  . After a few algebraic manip- 

3u„ = cnun, for 1 < n < N. If we define the 
•, cyv], then the weight matrix W can be 

For the noiseless case we have E 

ulations, we get that (7) is equivalent to w^A 
matrices W = [wi, ■ • •, WJV] and C = diag [c:, 
written: 

W = C(ATE)-1 (8) 
Indeed, when this weight matrix is applied to the input x, the output is proportional to the 
data vector: y = WTx = WTAEb = Cb. 
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In the general case when noise is present, the decorrelation condition in (7) can be 

achieved by defining the cost function J = w*%wB, where R^ = E [bxTj , and minimizing 

it with respect to w£ and subject to the condition wjun = 1. The condition sets wnn = 1, 
such that the n-th component of the input is transferred directly to the output. Indeed 
the minimum of the cost function J is achieved when the gradient of J is set to zero and 

wnn —- 1. r    ri (Q~\ 

VJ = %rw" = E Pnb] = CnUn ^ ' 
which is equivalent to the decorrelation condition (7). The steady state decorrelating weight 

vector is given by: 
Wn = /5Rf>n (10) 

where the scaling factor ß = (u^R^un)     is set to meet the linear constraint. 

3.3 Adaptive Algorithms 

When the signal environment is not stationary weight vectors for the MSE and the decor- 

relator can be calculated using steepest descent algorithms. 

3.3.1 MSE Separator Algorithms 

The LMS algorithm for updating the weight vector of the MSE separator is given by 

wn(fc)   =   wn(k-l)+tie{k)x(k) fn, 

e(jfe)       =   bn(k)-xT(k)wn(k-l) 

To distinguish it from the LMS decorrelator we refer to (11) as the LMS error algorithm. 
The convergence analysis of the LMS algorithm is well known. The necessary and sufficient 
condition for the convergence of the LMS algorithm is that the convergence factor 0 < p < 
2/Amax (Rx), where Amax (R*) is the largest eigenvalue of the covariance matrix R^. It is 
also well known that the speed of the LMS algorithm is determined by eigenvalue spread 

X = Amax (R-x) /Amin (R-x) ■ 
The RLS algorithm for the MSE separator is based on a recursive implementation oi 

relation (3) using the following updates of the covariance matrix R,, and cross-correlation 

vector r-j     : 
Rx{k)     =   {l-a)Rx{k-l) + ax{k)xT{k) ,_ 

rj„(*)   =   (1 - «) rj^fc-lHax(*)£»(*) 
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where a is the forgetting factor. From (12) and (3) we get the following recursion relations: 

— R^1(fc-l)x(fe) 
g(*0     = 
R^W = 
e(k)        = 

i^+xr(^)Rj1(i-i)x(fc) 
1 

l-o R;1 (k 

wn(k) 

3.3.2 LMS Decorrelator 

I-g(k)xT(k) 

abn (k) — xT (k) w„ [k — 1 
wn(k-l) + g{k)e(k) 

;i3) 

The LMS decorrelator is a steepest descent algorithm that seeks to null the instantaneous 
estimate of the gradient of the cost function J. From (10) we have, VJ = R? wn, and for 

the instantaneous estimate VJ (k) = b (k) xT (k) w„ (k) = yn (k) wn (k). According to our 
formulation wnn = 1, hence to preclude adaptation of wnn we premultiply the gradient by 
Un = (l — u„u^j which zeros its n-th component. The LMS decorrelator algorithm is given 
by: 

wn(fc)    =   wn(A;-l)-^j/n(Ä;)Unb(Ä;) 
wnn    =    1 (14) 

This relation can also be interpreted directly as seeking to minimize the instantaneous corre- 
lation between the output of the separating filter for the n-th source and the other detected 
sources. 

3.3.3 Convergence Analysis of LMS Decorrelator 

The LMS decorrelator have been observed to converge faster than the conventional LMS 
error algorithm [6]. In this part we will prove that the eigenvalue spread for the LMS 
decorrelator is smaller than for the LMS error, hence the former has faster convergence 
speed 

First we determine necessary and sufficient conditions for convergence of the LMS decor- 
relator. Define B = (l - u„u^j b, we can rewrite (14) 

wn(fc)   =      wn(k- l)-nyn (k)B{k) 

I-^B(k)xT(k) wn (£ - 1) 
(15) 

B 

To analyze the convergence speed we will estimate the eigenvalue spread for the LMS 
decorrelator and compare it with the spread for the LMS error. Using the assumptions stated 
previously for the LMS error analysis, we can write: 

E[wn(fc)]    =       [i-z^JEK^-l)] 
rI-^UnEAT]E[w„(A:-l)] 

and used the relations 

Rs  = VnRr = Un E fb fbrEAr + v)l = Un E bb5 EAJ = UnEA5 

(16) 

(17) 
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Without loss of generality, consider the separation of source n  =  1, from the other 

sources.    Define the following matrix and vector partitions:   wT =   [ Wl    \   WT )5 I = 

/ i   ;  o \ . 
:      _        gT _  / 0    ;   -g-T \    yrT =  ( x     :   XT ) • Then we can write equation 

loir/ 
(15) as follows: 

E [W (fc)] = ft - nRs.x] E [W (fc - 1)] - /x E [B' (fc) *! (fc) ^i (A; - 1) (18) 

We deduce that the convergence speed of the LMS decorrelator is controlled by the spread 

of the eigenvalues of R§>x- 
Proposition 1: The following relation exists between the largest eigenvalues o/Rg,x and 

bx' 
Amax (RgJ > Amax (R&x) (19) 

Proof: The matrix Rg>   can be expressed as a partition of the matrix R^: 

( y/Ti   '■ 
,T     \ 

Rt =EAJ 
bx 

Define the ratio 

V     *1        '■     *B'J 

zrRr z 

(20) 

piz  = bx 

ZTZ 
(21) 

According to the Courant-Fisher theorem [7], Amax (RJJ = max   p(z). Using the matrix 

partition in (20) and maximizing p (z) over the restriction zx = 0, we get 

Amax (%,.) >  max   p (z) = Amax \R.g>x) (22) 

Proposition 2: The following relation exists between the smallest eigenvalues ofRg>x and 

R 'bx' 
Amm (%,) < Amin (R&x) (23) 

Proof: According to a corollary to the Courant-Fisher theorem, and noting that Rg,x is 
the (JV - 1) x (TV - 1) leading principal submatrix of R^, we have: 

Amin (%J < Ajv-i \&S'x) ~ Amin (RB'x) (24) 

Proposition 3: If the noise is negligible then the eigenvalues ofRx are equal to the square 

of the eigenvalues o/R^. 
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Rx = RJ R^. It follows that A, (Rx) = Xj (%Jfor \<i<N. In particular, 

Proo/: We have the relation R^ = EAT, and for negligible noise we have Rx= AEEAT. Consequently 

(25) x(R,) = 
'»min \ ^VT? ) 

X %,) 

Proposition 4-' The eigenvalue spread x(Rx) associated with the LMS error algorithm, is 

larger than the spread x (^§0 associated with the LMS decorrelator. 
Proof: From Propositions 1,2 and 3 we have: 

x(Rx) = x2 Rr   >X R ̂Bx (26) 

Proposition 4 provides the explanation why the LMS decorrelator algorithm is faster than 
the LMS error algorithm. 

3.4 RLS Decorrelator 

We introduce a new decorrelating RLS type algorithm. Paralleling the development of 
the RLS algorithm from the MSE weight vector in (3), we developed the following RLS 
algorithm for the decorrelator weight vector in (10): 

g(*) 

K1 (*) 
v„ {k) 
wn(k) 

R^jk-^bjk) 
^+xT(k)R-1(k-i)b(k) 
l 

l-a 
wn(k- 

Vn(fe) 
u£vn(fc) 

-g(k)xT(k)\R-'(k-l) 

l)-g(k)xT(k)wn(k-l) 

where the last relation is designed to meet the linear constraint wjun = 1. The four algo- 
rithms are evaluated in the next section. 

IV. PERFORMANCE EVALUATION 

The performance of separation algorithms was evaluated in terms of the probability of 
error for detecting the transmitted data. Consider the probability of bit error for the n-th 
user. Since the data bit can take on one of two equiprobable values the total probability of 
error is equal to the conditional probability P [&n > 0 | bn = -l] . The probability of error 
at the output of a separator with weight vector wn is given by: 

Pe     = P [bn > 0 | bn = -1 

= P yn > 0 | bn = -1] 

= P [wjx > 0 | bn = -1 
= ^e{i,-i^{-P[w^x>0|6„ = -l]} 

bn- 
ol-iV v^ z       2^6{_lil}" 

tnn~z2j^ntn3bJ 
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_z where Q(z) = -7= Xf° e 2 dy, tnj is the j'-th element of the vector tn = w;AE, and the 
zero-mean Gaussian noise was assumed white. 

The convergence of the algorithms was studied by simulations. The simulations consisted 
of a TV = 4 users system. Without loss of generality, the error probability was computed for 
the first user. In generating the signal model we assumed a fixed cross-correlation between 
any two users of atj = 0.15, for any i / j. In the following figures the SNR is defined with 
respect to the first user, and the signal-to-signal ratio (SSR) is defined as the ratio of the 
bit energy of the first user to the bit energy of any of the other users. Each curve is the 
result of averaging ten independent runs. Figure 1 shows the average learning curves of the 
probability of error for SNR = 8 dB and SSR = - 10 dB. The LMS error does not converge, 
and the RLS error and RLS decorrelator converge faster than the LMS decorrelator. In 
Figure 2, the interference power is reduced to SSR = -5 dB, the LMS error has the slowest 
convergence while the other three algorithms converge at comparable speeds. Comparison 
of Figures 1 and 2 substantiates our claims that the LMS decorrelator is less sensitive to the 
eigenvalue spread than the LMS error. 

To estimate the convergence region of each algorithm we took the approach suggested in 
[8]. A figure of merit 7 is defined that relates the initial and final probabilities of error, Pe;, 
and Pef, as follows: 

7 = l - ^r (27) 

when Pef C Pei) 7 w 1. Note that 7 = 0 corresponds to no convergence is indicated by 
Pef — Pei. Figure 3 shows the convergence curves for SSR = -10 dB. The SNR is varied from 
-10 dB to +10 dB to result in the initial probabilities of error indicated on the abscissa. The 
LMS error does not converge for these parameters while the LMS decorrelator and the RLS 
error show slightly wider regions of convergence than the RLS decorrelator. In Figure 4 the 
convergence is shown for SSR = -5 dB. The RLS decorrelator shows the poorest convergence. 
The LMS decorrelator and the RLS error have wider regions of convergence than the LMS 

error. 

V. CONCLUSIONS 

In this paper we showed that the LMS decorrelator algorithm is faster than the LMS error 
algorithm due to a lesser eigenvalue spread. We introduced a new RLS type algorithm for 
decorrelation. The RLS decorrelator was shown to be faster than the LMS type algorithms 
and of comparable speed with the conventional RLS error. Regions of convergence for the 
LMS decorrelator and the RLS algorithms were shown to be wider than for the LMS error 
algorithm. 
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APPENDIX A: PART II 

ADAPTIVE DETECTORS FOR MULTI-CHANNEL SIGNALS IN CODE 
DIVISION MULTIPLE ACCESS SYSTEMS 

by 
Alex Haimovich, Ruth Onn and Yeheskel Bar-Ness 

ABSTRACT 

This paper considers adaptive receivers for multi-channel cross-correlated signals. The 
specific application considered is the separation of signals in code division multiple access 
(CDMA) systems, but the methods developed are applicable to other similarly modeled 
problems. The minimum mean square error (MSE) and the signal decorrelation criteria 
are applied to derive feedforward and feedback detector structures. It is shown that in the 
noise-free case, and at steady state, these detectors indeed perform signal separation. The 
performance of these adaptive detectors in noisy environment is compared against each other 
and to the ideal decorrelator detector. The Feedback Minimum Error detector is found to 

have the closest performance to the ideal decorrelator. 

I. INTRODUCTION 

This paper considers adaptive receivers for code-division multiple-access (CDMA) signals. 
A number of low complexity structures have been proposed by Verdu [1], Aazhang [2], and 
others to solve the multi-user detection problem with little degradation vis-a-vis the optimal 
detector. In particular the decorrelating detector was shown to be near-far resistant, i.e., 

insensitive to the power of the interfering signals. 
Most of the strategies for multi-user detection exploit the knowledge of the codes assigned 

to the users to decorrelate between the signals. Furthermore, it is customarily assumed that, 
following match filtering in each channel, the cross-correlations between the signals are known 
and can be eliminated by the fixed decorrelating receiver. Nevertheless, in practice, channel 
effects often cause unknown correlations at the output of the filters. This paper addresses 
the design of adaptive receivers for the separation of CDMA signals. The work has been 
inspired by structures previously suggested for blind signal separation and referred to as 

bootstrap algorithms [3]. 
In Section II we define the system model, review the single user and the fixed decorrelator 

detectors, and present the feedforward and feedback configurations for adaptive signal sep- 
aration. Four adaptive detection criteria, two for the feedforward and two for the feedback 
configurations, are presented in Section III. LMS type algorithms are suggested for each 
detector. The performance of the adaptive detectors is compared by simulations in Section 

IV. Section V provides the conclusions. 
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II. SYSTEM MODEL 

Consider an iV-user synchronous CDMA system. We make the following basic assump- 
tions: 

(1) The sources are independent. 

(2) The outputs of the channels consist of a linear mixture of the inputs. 

(3) Number of inputs is equal to the number of sources. 

The waveform (code) used by the n-th user is denoted by gn(t), 0 < t < Ts, where Ts is 
the data bit duration. This waveform is used to modulate each of the n-th user information 
bits. The received waveform is given by cn(t) = gn(t) * hn(t), where hn(t) is the n-th channel 
(unknown) impulse response. The channel causes interchip interference, but it is assumed 
that the intersymbol interference is negligible. The received signal is applied to a bank of 
filters, which are matched to the signature waveforms gn(t). Due to the channel effects, the 
outputs of the match filters is represented by an unknown correlation matrix A = {A;J}. A 
is normalized such that Ann — 1. The channel response is assumed not to vary with time; 
hence, A consists of fixed elements. It is also assumed that A is strictly diagonal dominant, 
i.e., \Aij\ > ^P \A{j\. This assumption implies that the autocorrelation of the signal in any 

channel is larger than the sum of the cross-correlations between that channel and the other 
channels. With this assumption, A is invertible. Let x be a vector representing the bank of 
match filters outputs sampled at t = iTs. Then x can be written: 

x = AEb + z (1) 

where E is the diagonal matrix, E = diag (y/£i, ■ ■ ■, \/^v) , and bT = (b1,... , b^). The 

information symbols bn E { — 1,1} are outcomes of identical, uniformly distributed, and in- 
dependent between users random variables. £n is the unknown energy of the received signal 
from user n. A time index is not used since decisions are based on observations in a single data 
bit interval. The noise vector z, is assumed Gaussian with correlation matrix R(z) = <r2G, 
where G is the cross-correlation matrix at the output of the match filters when the input is 
white noise ((G){j = J0

Ts gi(t)gj(t)dt). 

2.1 Single User Detector 

The conventional single user detector makes its decision based on the sign of the appro- 
priate element of x. Thus the decision for the n-th user is given by: 

bn = sgn(xn) (2) 
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The n-th user error probability of the single user detector P° can be calculated as follows: 

Pn
s    =    P[xn>0\bn = -l] 

=       Y,    P[x„>0|b]P[b | &„ = -!] 

=   2 1-7V E Q 

(\frn-Y,\l^3nh3\ 

be{-i,i}N 

6n = -l 

(3) 

V 
*(G)r 

/ 

whereP(b|6n = -l) = 21-Jv. 

2.2 Decorrelation Detector - Known Correlation Matrix A 

If channel effects are ignored then A = G is known.   The data vector b can be re- 
Gxx =  G covered from the outputs of the bank of match filters as follows: y 

(GEb + z) = Eb + r). The gaussian noise vector r\ is zero mean and has covariance ma- 

trix R(n) = G-1R(z)G-T = <72G~T, (G~T = (G"1)T). For the n-th user we have 
yn = vfe&n + Vn, and bn = sgn(yn). Hence, the n-th user probability of error P* is given by 

-Qt fin 
r2(G-T)J (4) 

In this work we are concerned with the design of multi-user detectors when the correlation 
matrix A is not known. In this context we distinguish between two basic configurations: 
feedforward, in which the adaptive filter operates on the inputs vector x, and feedback, in 
which the adaptive filter operates on the outputs vector y. Both configurations are shown 

schematically in Figure 1 

2.3 Adaptive Detector - Feedforward Configuration 

The n-th user output-yn, is obtained by applying the n-th channel filter coefficient vector 
wn to the input vector x. If the weight matrix for the forward configuration is defined 
W = [wi, w2, • • •, WAT] , the output vector is given by y = WAEb + Wz. The decision 
sheer output is given by bn = sgn(yn) = sgn(w^x). For any specific weight vector wn, the 
probability of error for the n-th user can be calculated as follows: 

Pi     =   P bn > 0 | bn = -1 

=   P yn > 0 | bn = -i; 

w^x > 0 | bn = -1 

ft. 
=   21 -N E   Q 

b€{-l,l}N 

(5) 

/ 
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where tnn is the n-th element of the vector tn = w^AE, and pnn = w^Gw„ is zero-mean 
Gaussian noise with variance a2finn. 

2.4 Adaptive Detector - Feedback Configuration 

With the feedback adaptive multi-user detector the output yn results from subtracting a 
linear combination of the other outputs v^y„, from the n-th user input xn, yn = xn - vjyn, 
where vn denotes the TV x 1 feedback weight vector. yn is the vector of outputs obtained 
from y by setting yn - 0. The last relation can be rewritten xn — yn + v?yn = v^y, where 
vnn = 1. We define the weight matrix for the feedback configuration V = [vx, v2, • • ■, vN]T, 
which relates the output of the adaptive receiver to its input, x = Vy. If V is invertible then 
the output y can be obtained as y = V~xx. Otherwise, the generalized inverse can be used to 
compute y. The probability of error can then be found from eq. (5) using V-1 in place of W. 

III. Signal Decorrelation Criteria 

In this section we define four signal separation criteria. Two are based on the minimiza- 
tion of the mean square error (MSE) between the channel output and a reference supplied 
by the detected output. The other two criteria are for decorrelation of the outputs. 

3.1 Feedforward Minimum Error Detector 

The Feedforward Minimum Error (FME) detector minimizes the mean error between its 
output and a reference signal. Typically, the reference is initially supplied by a training 
signal. When the adaptive weights converged and the errors with respect to the training 
signal are small, the detector is switched to operate in decision directed mode, with the 
reference signal supplied by the detected symbol. The FME detector realizes the optimal 
linear receiver for each of the users. The filter coefficients may be updated using the LMS 
algorithm: 

W„(ä; + 1) = wn(k) -fie(k)x(k) (6) 

where e (k) = bn (k) - yn (k) and yn(k) = w*(k)x(k - 1). The steady state solution of the 
FME detector in terms of the weight matrix is given by, 

WFME    =   arS  ™n  E 

=     R-lRr5 

w x. 
(7) 

where Rj, = E xxT is the input correlation matrix, and R - = E [xbr| is the cross- 
correlation matrix between the input and the estimated symbol. This criterion leads to 
signal separation in the noise-free case and to power-inversion interference cancellation when 
additive noise is present. In the noise-free case the input correlation matrix can be written: 

R.   =   AEE[bbT]EAT 

=   AE2AT (8) 
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where E2, is a diagonal matrix of the signal energies, and we used E [bbT] = I, since the 

signals are assumed independent between users. 
The cross-correlation matrix is: 

R 
x b 

=   E AEbbr 

=   pAE 

where we used, p = 1 - 2Pr % + b3] = 1 - 2Pe, and the result [4]: 

(9) 

E bibj 
t = J (10) 

Then the weights are given by WFME = pA^E"1.   In the absence of noise, this^linear trans- 
formation applied to the input vector, recovers the transmitted signals, y = WpMEx - pb. 

3.2 Feedforward Zero Correlation Detector 

The Feedforward Zero Correlation Detector (FZC) is different from the FME detector. 
The FME weight vector for any user is controlled by the error derived solely from the sheer 
output corresponding to that user. In contrast, the n-th channel FZC weight vector is 
controlled by all other sheers' outputs. Separation is achieved through decorrelation of the 
n-th channel sheer input from all the other sheers' outputs. LMS zero correlation algorithms 
have been proven to have faster learning curves than LMS minimum error algorithms [4]. 
The LMS zero correlation algorithm for the n-th channel is given by: 

(11) wn{k + 1) = wn(fc) - nyn (fc) b„ (k) 

where bj %!,■■■,0,---,b 'N is obtained from the vector of estimated outputs b, by setting 

bn = 0. The input to the n-th channel is passed with unity gain, wnn = 1. The algorithm 
converges in the mean when E [ynbn] = 0, or equivalently, when E [ynb\ - anun, where un 

is a unit vector with the n-th element set to 1, and an is chosen such that wnn = 1. Using 
matrix notation, decorrelation is achieved for E [ybT] = diag {au...,aN) = D. In terms of 

the weight matrix W, and using eq. (9), this condition can be written: 

E[ybr]    =   E[w^zc(AEb + z)b5 

=   pWfzcAE 
(12) 

Hence 
WFZC = D (pAE)"1 (13) 

Indeed, when this weight matrix is applied to the input x, each channel output consists of 
a scaled output of that channel's user and noise: y = Wj^x = W|zc (AEb + z) = 

p-aDb + WpZCz. Notice that with the decorrelation criterion it is not necessary to assume 

a noise-free environment in order to achieve separation. 
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3.3 Feedback Minimum Error Detector 

The Feedback Minimum Error (BME) detector minimizes the MSE between the input to 
the n-th channel sheer yn, and a reference signal supplied by the sheer output bn. It achieves 
that by subtracting from xn a linear combination of the other users' outputs, v% yn. The 
error is given by e (k) = bn (k) - yn (k), and the MSE is defined by e = E [e2 (k)]. Using 
y = V-  x, the BME weight matrix is given by: 

VBME   =   ar§ mm E 

=   R ^ Rx 
xb 

b-V~Tx 

Using eqs. (8) and (9) we get for the noise-free case, Vgjyjg = (p_1E_1A_1) (AE
2
A

T
) = 

p~ EA . The feedback filter coefficients Vg^^ achieve signal separation: y = Vö^xpX = 
pb. The n-th channel BME feedback filter coefficients are updated using the following LMS 
algorithm: 

yrn(k + l) = vn(k) + (ie(k)yn(k) (14) 

With the n-th element of yn set to zero, the algorithm does not control vnn, which is set to 
1. Convergence in the mean is achieved when the error between the input to the sheer and 
its output is decorrelated from the inputs to the other slicers. 

3.4 Feedback Zero Correlation Detector 

The Feedback Zero Correlation (BZC) detector is the feedback configuration analogous 
to the FZC detector. The updating of the n-th channel feedback weight vector is given by 
the following LMS decorrelation algorithm: 

vn(k + l) = vn(k)-[iyn(k)bn(k) (15) 

where the vector bn has been defined previously. The algorithm does not control vnn, which 
is set to 1. This algorithm converges in the mean when E [ynyn] = 0, or equivalently, when 

E ybT] = diag (a1}...,aN) = D, where the elements of D are such that vnn(k) = 1. The 
feedback filter coefficients Vg£C can be found as follows: 

E[ybJj    =   E[VJ5J
zc(AEb + z)b3 

=   PyBZCAE 
(16) 

Hence, 

VBZC=PD-1EAT (17) 

Indeed, when this weight matrix is applied to the input x, each channel output consists 
of the scaled corresponding user signal and noise: y = VÖ7/-1X = ^xryn (AEb + z) = 

pD_1b + Vg^QZ. Similar to the FZC detector case, the noise-free assumption is not re- 
quired by the BZC detector for signal separation. 
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IV. SIMULATIONS RESULTS 

A performance comparison of the operation of those detectors in noise has been carried 
out by simulations. The simulation model consisted of a N = 4 channel system, with fixed 
cross-correlations of 0.2. Probabilities of error were calculated after convergence of the four 
algorithms in eqs. (6), (11), (14), and (15), respectively. Figure 2 shows the probability of 
error of the first signal as a function of the power ratio of the second to the first signal, with 
the powers for signals 3 and 4 kept constant, and SNR = 8 dB. Curves for probability of 
error for decorrelation with known cross-correlation matrix A and single user detector are 
also shown. It can be observed that the performance of the adaptive BME detector is the 
best among the methods considered. It is actually slightly better even than the decorrelator 
detector with known A, for the whole range of power of the second user signal. The advan- 
tage of the BME method is the consequence of minimizing an error, rather than imposing 
the zero correlation condition. It is also noted that the FME detector is sensitive to the 
power level of the interference, and has the poorest performance among the adaptive detec- 
tors when the interference is lower than the desired signal. Figure 3 shows the probability of 
error of the first user as a function of the SNR, when the power ratio of the second user to 
the first user is 5 dB. The BME has the closest performance to the known correlation matrix 

detector. The FZC and BZC detectors are slightly worse. 

V. CONCLUSIONS 

Four adaptive methods for signal separation are compared. Two methods are based on a 
feedforward configuration, the feedforward minimum error and the feedforward zero correla- 
tion, and two methods are based on a feedback configuration, the feedback minimum error 
and the feedback zero correlation. The feedback minimum error is shown to have the best 
performance in terms of probability of error. 

References 
[1] R. Lupas and S. Verdu, "Linear multiuser detectors for synchronous code-division 

multiple-access channels," IEEE Trans. Information Theory, vol. IT-35, pp. 123-136, 

Jan. 1989. 

[2] M. K. Varanasi and B. Aazhang, "Near-optimum detection in synchronous code-division 
multiple-access systems," IEEE Trans. Communications, vol. COM-39, pp. 725-736, May 

1991. 

[3] A. Dine and Y. Bar-Ness, "Bootstrap: A fast adaptive signal separator," in ICASSP '92, 

pp. II.325-II.328, 1992. 

[4] A. Haimovich, R. Manzo, and Y. Bar-Ness, "Fast decorrelating algorithms for signal 
separation," Submitted to Globecom '94. 

55 



V w„ JL bäj ^  y"~ I 

v. 
Jn 

FEEDFORWARD FEEDBACK 

Figure 1: Feedforward and feedback configurations of the adaptive multiuser detector. 
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Figure 2: Probability of error in first signal versus the ratio of the second to first signal. The 
methods compared are: FZC (dashed line), BZC (dash-dot), FME (regular LMS) ( circles 
on dots), and BME (continuous line). Also on the plot are the lines indicating the single 
user detector, and the de-c orrelator detector probabilities of error (dotted lines). 
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Figure 3: Probability of error versus SNR for first signal. The methods compared are: FZC 
(dashed line), BZC (dash-dot), FME (regular LMS) ( circles on dots), and BME (continuous 
line). Also on the plot are the lines indicating the single user detector, and the de-c orrelator 

detector probabilities of error (dotted lines). 
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APPENDIX B: PART I 

ERROR PERFORMANCE OF SYNCHRONOUS MULTIUSER 
CODE DIVISION MULTIPLE ACCESS DETECTOR 

WITH MULTIDIMENSIONAL ADAPTIVE CANCELER 

by 
Zoran Siveski, Yeheskel Bar-Ness and David W. Chen 

ABSTRACT 

A code division multiple access detector that employs a combination of a decorrelator and 
a multidimensional interference canceler is considered. The weights of the canceler are adap- 
tively controlled using a steepest descent algorithm. The probability of error is evaluated 
and compared to those of the decorrelating detector and a similar, fixed-weights scheme that 
requires an estimation of received signal energies. It is shown that the proposed two-stage 
detector provides substantial improvement over the decorrelating detector, particularly in 
the presence of strong interfering signals. This is especially noticeable in the high bandwidth 
efficiency cases. It is also observed that in the presence of weak interferers, the proposed 
scheme performs better than its fixed-weights counterpart. 

I. INTRODUCTION 

A conventional single-user detector implemented in the Code Division Multiple Access ( 
CDMA ) system consists of a bank of filters, each one matched to the signature sequence of 
the particular user. The sampled output of each matched filter, besides the desired signal, 
contains the residual interference from all other users. The presence of a strong interfer- 
ence often makes it impossible to detect the weak user, a condition referred to as a near-far 
problem. In [l] a receiver that is optimum in the multiuser interference environment was 
proposed and shown to eliminate the near-far problem and provide much improved perfor- 
mance. The improvement comes at the expense of high computational complexity. A class 
of suboptimum receivers that uses decorrelating detectors and which is based on the linear 
transformation of the sampled matched filters' outputs was considered in [2] and [3]. The 
decorrelating decision-feedback detector presented in [4] utilizes the difference in received 
users' energies where the decisions of the stronger users are used to eliminate interference on 
weaker users. Another approach for suboptimum multi-user detectors with low complexity 
was proposed in [5] and [6], where in order to perform detection of the desired user, tentative 
decisions on information bits of all other users are made. The estimate of the multiple access 
interference is then obtained and is subtracted from the desired signal. The performance 
of some of these suboptimum schemes is close to the performance of the optimum detector, 
particularly when the power of the interferers increases, they become indistiguishable. How- 
ever, these schemes have to perform an estimation of the received signal energies, knowledge 
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of which is required for the detectors' proper operation. 
The detector for synchronous CDMA systems proposed here consists of a decorrelator and 
a nonlinear multidimensional interference canceler whose weights adaptively adjust to the 
incoming signal. In Section 2, the system model and the derivation of the expressions for the 
steady state values of the weights and the output error probability are presented. Numerical 
examples and a discussion are presented in Section 3. 

II. DETECTOR: MODEL AND ANALYSIS 

A synchronous CDMA receiver considered here consists of a bank of filters (matched to 
the users' signature sequences) front-end, followed by samplers and the decision system, as 
depicted in Fig. 1. 

s^-0 

r(t) 
 =» 

/ 

«tfT-O 

t=T 

Adaptive canceller 

Figure 1: Proposed receiver scheme 

The received signal r(t) is expressed as: 

K 

r(t) = J2YJ h{i)y/äkSk(t - iT) 
k=l    i 

n (*) (1) 

where bk(i) £ { —1,+1} is the &-th user's data bit in the i-th time interval and n(i) is the 
additive, zero mean, white Gaussian noise with the two-sided power spectral density N0/2. 
The received energy of the fc-th user signal, unknown to the receiver, is denoted as a*. While 
in reality it is slowly time varying, it is assumed to remain unchanged over the transmission 
horizon of each user. The signature sequence Sk(t), of the same duration T as a data bit, is 
known to the receiver. The sampled outputs of the bank of matched filters in the i-th bit 
interval can be expressed as: 

x(i) = VAb{i) + n{i) (2) 

For the sake of convenience the index i will be omitted elsewhere in the text. 
X    =    [Xi,X2, ,xK]T, =  [bi,b2, 

In (2), 
&A']T, A = diag[v/ö:r, yö^,..., ^JOK] is a diagonal 
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matrix and n = [nx,n2,... ,nK]T.   The (fc, j)th element of the symmetric crosscorrelation 

matrix V is defined as: 

Pkj = I  sk(t)sj(t)dt       fc,je(l,2,...,üQ 
Jo 

with pkk = 1. The covariance matrix of a zero mean Gaussian noise vector n is, 

E{nnT} = ^T 

The outputs of the decorrelator are given as: 

z = V'xx = Ab + V~ln = Ab + rn = Ab + £ (3) 

where T is the inverse of V, and £ = Tn. Let 6 = [Si, 62, • • ■, &K]    
be the decision output 

of the decorrelator defined as: 
b = sgn(z) 

Then the canceler's output is given by: 

where 

W = 

y = a; - WTb 

0 W12      • ■ • 

W21     0 

(4) 

(5) 

W2K 

. WK1     WK2     ■ ■ ■ 

The output for the k-th user can be expressed as: 

Vk = %k - wk  bk (6) 

where wk is the k-th column vector of W with the element wkk deleted, and bk is vector 
obtained from 6 by deleting the element bk. The multidimensional canceler structure is the 
same as the one termed in array processing sidelobe canceler, except for the fact that for 
auxiliary signals we are using the decisions outputs of the decorrelator. For controling the 
weights we use steepest descent algorithm which simultaneously minimizes the output signal 
powers E{yl). That is, for the Jb-th output, the optimum weights are obtained by iterative 

search: 

Wk <_ Wk _ LJLE{yl} = wk- ^^-E{(xk - wT
kbkf} = wk + ßE{ykbk)       (7) 

2 dwk 2 dwi 

Clearly such an algorithm, by minimizing the output power, forces the correlation between 
the desired output signal and vector of tentative decisions of interfering signals to zero. In 
practice, the expactation operation is replaced by time averaging. 
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The steady state values can be evaluated as follows: 

d 
dw, 

E{y2
k} = 0   = ■^-E{(xk - wT

kbk)(xk - wT
kbk)T) 

 F.ir* — 9-r, h. lit,   -L II-1 »    " 
dw, 

-E{xk - 2xkbk wk -f wk bkbk wk} 

T. 
-2E{xkbk} + 2E{bkbk}wk (8) 

From the definition of 6 it is obvious that E{bibj} = 0 for i + j.  Also, it should be noted 
that E{£nT} = (7V0/2) J, where I denotes the identity matrix. Then, it is easily shown that: 

E{xkbk) = E { ^fakbk + pT
kAkbk + nk bk~j = c2\ iT 

AkE{bkbk] Pk (9) 

where Ak is a diagonal (K - 1) x (K - 1) submatrix of A with its k-th diagonal entry 
removed, pk is a (K - 1) x 1 k-th. column vector obtained from V by deleting the element 
Pkki and bk is a (K - 1) x 1 vector obtained from b by deleting the element bk.   Clearly 

E{bkbk } is diagonal, therefore the system of K - 1 linear equations (8), together with (9), 
gives the steady state values of the weights affecting the k-ih output as: 

wk E{bkbk } 
-r. 

AkE{bkbk}pk (10) 

The expectations in the above expression can be computed as follows: 

E{bibj}   =   E{sgn(yfiribi + £i)8gn(y/ö]bj + ZJ)} 

bi,bj 

where each probability term in the above sumation defines four integrals. That is: 

mh) = \t J JDi fi^idCi -\fJJDi f^dtidt: i*j (11) 

where f^ denotes the bivariate Gaussian density function, and Dt an appropriate rectan- 
gular region of integration. The covariance matrix of the two, zero mean, random variables 
£i and £j can be obtained as a submatrix of the K x K covariance matrix 

E{UT} = E{(rn)(rn)T} = ^r 

Also: 

where: 

E{bibi} = 1 - 2Pr{b{ in error} = 1 - 2Q 
HiNo/2, 

(12) 

(13) 

Q(x) 
/2TT JX 
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Let the decision output of the second stage b = bi,b2,...-,bK be denned as: 

6 = sgn(y) 

The output error probability for k-th user is evaluated as follows: 

Pet    -   E   ,   i Pr{bk in enov\bk,bk,bk} 
bk,Dk,Ok 

1 

(14) 

£   [Pr{nk > yfiTk - bT
kAkpk + wT

kbk] 

bk,bk 

+    Pr{nk < -yfii - b\AkPk + wT
kbk}\ Pr{bk\bk}Pr{bk} 

Since Pr{bk} - 2_(K_1) and nk is a zero mean Gaussian random variable we can write: 

Pek    =   2~A"  £   [Pr{nk > v^I - bT
kAkPk + wT

kbk) 

bk,bk 

+    Pr{nk > ^Tk + b\Akpk - wT
kbk}] Pr{bk\bk) 

It can be shown (see Appendix) that Pr{bk\bk} = Pr{-bk\ - 6fc}, and therefore: 

Pek = 2-(
A'-1)   Y,   [Prink >V^~ bT

kAkPk + wT
kbk}} Pr{bk\bk] (16) 

bk,bk 

Finally Substituting (10) into (16) and recognizing that Ak is diagonal, we obtain for the 
k-th. user error probability: 

(15) 

Pek  = 2-(A'-1}    £    Q 
bk,bk 

Ofc - \bl - bk 
;T, 

E{bkbk)      E{bkbk})AkPk 

\ 

V^o/2 
Pr{bk\bk}    (17) 

/ 

Pr{bk\bk} is the integral of the (K - l)-variate Gaussian density function 

Pr{bk\bk} = 
fo*)«-1^* 

oo 

i=l,...,K      i^k 

where £k is a vector obtained from £ by deleting the element £fc 
and sk is the (K - 

1) x (K - 1) covariance matrix of £fe obtained from (12) by eliminating the fe-th row and 

column.   Introducing \k = Ak^k, Tk =  (A^0/2)-1Sfc, and Rk = diag [^SÄTRi", ...    , 
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y'SNRk-ii y/SNRk+i, • • •, -\/SNRK , where SNRi = a;/W0, the above integral becomes: 

Pr{bk\bk} = -&L 
nil, y/SNRi 

^K-X\rk 

The probability of error can be expressed as: 

/'"/       exp[-\lRkrk
lRk\kjd\h 

6; A; = -(>,{>; 

i=l,...,K      i^k 

Pek = 2-t^-1)  £  Q V2   JSJVi?* -\bl-b 
iT 

k ~ uk E{bkbk) 
:T 

E{bkbk}\RkPk Pr{bk\bk} 

(18) 
III. NUMERICAL EXAMPLES AND DISCUSSION 

In this section, two sets of numerical examples for the bit error probabilities of the proposed 
adaptive detector are calculated and presented. For comparison purposes, the error perfor- 
mances of the corresponding fixed-weights detector of Ref. [6] (in which the weights are set, 
based on the knowledge of the received signals' energies, to Wji = pijy/äj), and those of the 
decorrelating detector are included. 
The first example depicted in Fig. 2 is a simple, two-user case, but it nevertheless provides 
some insight into the steady state behavior of the adaptive detector. The crosscorrelation 
coefficient taken to be 0.7, can certainly be considered as representing a high bandwidth 
efficiency case. The SNR of user 1 is set to 8 dB, while the SNR of user 2, relative to user 
1, varies from -10 to 8 dB. From this figure we notice first that when the interferer (user 2) is 
strong, user 1 achieves the performance of the single user system. Also noticeable is the fact 
that the adaptive system performs the same as the system with fixed weights [6]. On the 
other hand, with a weak interferer, and consequently, poor tentative decision b2, the adaptive 
system slightly outperforms the corresponding fixed-weights scheme. The improvement can 
be explained by comparing their respective amounts of residual interference. In the former, 
from (6), it is equal to /912A/Ö2 [h - E{b2b2}b2 , which is certainly less than in the latter 

case of pi2y/Ü2 b2 - b2 . For almost all SNR's the performance of the decorrelating detector 
compares unfavorably to the other two. 
In the second set of examples, Gold sequences of length seven (frequently used in the liter- 
ature, e.g., [4] and [6]) are chosen for signature waveforms. The rationale for such a choice 
is that Gold sequences are regularly used in an asynchronous CDMA environment and the 
study of its proposed synchronous counterpart may provide a useful indication of the per- 
formance of the former. The crosscorrelation matrix V in this case is: 

7 -1 
-1 7 
3 -1 
3 3 
3 -1 

3 
-1 
7 

-1 
-1 

3 3 
3 -1 

-1 -1 
7 -1 

-1 7 
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The two-user case with Gold sequences is shown in Fig. 3. As expected, in this low band- 
width efficiency scenario (p12 = -1/7) the decorrelating detector performs as well as the 
other two schemes. By adding an additional user, Fig. 4, the decorrelating detector begins 
to exibit its inadequacy. The adaptive and the fixed-weights scheme show virtually identi- 
cal performance, with the former being only slightly better for weak interferers. With the 
number of simultaneous users increasing further to K=4 and K=5, as in Figs. 5 and 6, re- 
spectively (note the change of the vertical axis scaling), certain trends become more obvious. 
Due to its unacceptable high probability of error, the decorrelating detector clearly does not 
represent an appropriate choice. When the interferers are strong, both the adaptive and the 
fixed-weights scheme achieve the performance of the single user. The former provides better 

error performance with weak interferers. 
Finally, Fig. 7 depicts the error probabilities in the case when all users maintain the same 
SNR's. It shows the extent of the performance deterioration of the system as the number of 

simultaneous users increases. 

IV. CONCLUSION 

The adaptive code division multiple access detector proposed here was shown to provide 
significantly better steady state error performance than the decorrelating detector. This is 
especially true under the most critical conditions for the multiuser environment, such as 
near-far situations and high bandwidth efficiency utilization. In the presence of strong in- 
terference the proposed detector achieves the performance of the optimum detector. When 
interfering signals are weak, it performs slightly better than its non-adaptive counterpart 
(one that requires prior estimation of the received signal energies), but without requiring 
knowledge of the received signal energies. This paper deals with the synchronous case, 
which is not aplicable to base station processing. The asynchronous case, as an extension to 
the synchronous case approach, is currently being pursued by the authors. 

V. APPENDIX 

By definition: 

Pr{bk\bk}    =   Pr{sgn(v^&i+&),..., sgn(v/a^&fc_i+&_i), 

sgn(y/ah+1bk+1 + £fc+i),. • •, sgn(^/ä^bK + £K)} 

=   Pr{h^ > —v/a^&i&i,..., bk-iCk-i > -y/o-k-\h-\h-i, 

bk+itk+i > —y/äk+ih+ih+i,- ■ ■, bn^K > -\fÖKbKbK} 

=   PriWix < y/a{bxbx,..., 6fc-i6;-i < yjak-ibk-ih-xi 

bk+xik+i < \fa-k+\h+\h+\,- ■ ■, bK£K < \fÖKbKbK} 

=    Pr{-bk\-bk) 
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APPENDIX B: PART II 

SYNCHRONOUS MULTIUSER CDMA DETECTOR 
WITH SOFT DECISON ADAPTIVE CANCELER 

by 
David W. Chen, Zoran Siveski and Yeheskel Bar-Ness 

ABSTRACT 

A two-stage multiuser detector for the synchronous code division multiple access (CDMA), 
additive Gaussian noise channel is considered. It employs a combination of a decorrelator 
and a nonlinear multiuser interference canceler that utilizes soft tentative decisions. The 
weights of the canceler are adaptively adjusted, thus rendering the knowledge of the received 
signal energies unnecessary. The steady state error performance of the detector is obtained 
and found to be superior to the performance of the same detector that utilizes hard tentative 
decisions. 

I. INTRODUCTION 

A synchronous CDMA receiver that employs a combination of a decorrelator and a multiuser 
interference canceler and whose weights are adaptively controlled was presented in [1]. The 
scheme did not require a prior estimate of received signal energies, as was the case with 
its non-adaptive, fixed weight counterpart described in [2]. The tentative data bit estimates 
used in the canceler were obtained as hard decisions on decorrelator outputs. In the presence 
of strong multiuser interference, in the steady state, the adaptive scheme approached the 
performance of an optimum receiver, while in the presence of weak interference it performed 
better than [2]. In this paper, soft tentative decisions, in the manner described in [3,4] are 
used instead, and the steady state error performance of the detector is evaluated. 

II. DETECTOR: MODEL AND ANALYSIS 

The detector considered here is shown in Fig. 1. The received signal r(t) is expressed as: 

K 

r(t) = YJ 2 bk{i)y/äkSk(t - iT) + n(t), 
k=l    i 

where bk(i) £ { —1,+1} is the fc-th user's data bit in the i-th. time interval and n(t) is the 
additive, zero mean, white Gaussian noise with the two-sided power spectral density N0/2. 
The received energy of the fc-th user signal, unknown to the receiver, is denoted as ak. The 
signature sequence Sk(t), of the same duration T as a data bit, is known to the receiver. The 
sampled outputs of the bank of matched filters in the i-th bit interval can be expressed as: 

x = VAb + n, 



where: x = [x1, x2,..., xK]T, b = [6X, b2,..., 6K]
T

, 

n = [ni, n2,..., nA"]T and A = diag[y/äl, y/ä^,..., T/ÖK}. 

The (&,j)th element of the symmetric crosscorrelation matrix V is defined as: 

Pkj = /    sk{t)sj(t)dt, 
Jo 

with pn- = 1. The outputs of the decorrelator are given as: 

z = T'lx = Ab + V-Xn = Ab + £, 

where z = [zx, z2,..., zK]T and £ = [&, f2, ■ • •, {K]
T

 • 

The output for the k-ih user can be expressed as: 

K 

Vk = Xk - wk
Thk = xk - J2wikhik, 

1=1 

where wk is the fc-th column vector of a K x K weight matrix W, with the element wkk = 0 
deleted, and hk is the k-ih column vector of a K x K matrix H, with the element hkk = 0 
deleted. The (/, fc)th element of the matrix H represents the output of the soft limiter to 
the input zi, and, for /, k = 1,..., K    I ^ k, is defined as: 

1 / \     _      f        Zl/hk \Zl\     <    Xlk /^\ 
1   sgn(zi)   otherwise. 

The limiter's parameter \\k is determined heuristically from the observed values of the decor- 
relator outputs as: 

Plk[E{\zk\}]* 
Xlk =      E{\Zl\}     ' (3) 

where the above expectation is evaluated as: 
ak 

E{\zk\} = ^k(l-2Q[^-)) + 2^:e  ^ 
V \<rtkJJ      V2TT 

Q(x) = ^r[
O0e-*'*dt, 

VZ7T Jx 

and a^k is the variance of £&. 

For controlling the weights, the steepest descent algorithm, which simultaneously minimizes 
the output signal powers E{yl}, is used. That is, for the k-ih output, the optimum weights 
are obtained by the iterative search 

wk(i + l)   =   wk(i)-^-^--E{yl(i)} 
2 dwk(i) 

=   (I - ßE{hkhl})wk(i) + fj,E{xkhk}. 
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(In practice, the expectation operation is replaced by time averaging). 
The steady state values can be evaluated from: 

E{yl) = 0 = -E{xkhk) + E{hkh
T

k}wk. (4) 
dwk 

It is easily shown that: 

E{xkhk}   =   E { ^ßkh + piAkbk + nk hkj 

=    [AkE{bkh
T

k}]T Pk, 

where Ak is a diagonal (K — 1) x (K — 1) submatrix of A with its fc-th diagonal entry 
removed, pk is a (K — 1) x 1 k-th column vector obtained from "P by deleting the element 
pkk, and bk is a (A' — 1) x 1 vector obtained from 6 by deleting the element bk. Clearly 
E{bkhk } is diagonal; therefore, the system of K — 1 linear equations (4) gives the steady 
state values of the weights affecting the k-i\\ output as: 

wk = [E{hkhl}\     AkE{bkh
T

k}pk. (5) 

The expectations in the above expression are given in the Appendix. 

Defining the k-th user final decision output as bk = sgn(yk), its probability of error is 
evaluated as follows: 

Pe*      =     Ebk,bk,hkPr^bk^bk\bk'b^hk^ 

= ^J2Ehk
Pri-^+blA^Pk 

bk 

-w1hk + nk> 0\hk}. 

Introducing the transformed Gaussian random variable ^, 

, A    wik *Pk = nk- l^Ci—ti, 
Aik 

where 

c-il    '**'' <Xik     i - 1 2 K  i ^ k Cl~\0   otherwise      ~ i,Z'''''A ' % + *> 

the error probability becomes: 

P    = _*_. 
e*      2K~X 

H Ehk
Pri^ > Väk - bT

kAkpk + wT
kgk\hk}, 

bk 
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(6) 

where 
9k = [9ik,92k,- • -,5'fc-i,fc,5fc+i,fc5---55A"]    with 

j     y/äibi/Xik      \Zi\  <  Aik • _  -i    9 if     ■ _L   L 

1   sgn{Zi)       otherwise 

Defining the vector £, 

the final expression for the error probability is obtained as: 

2K~l 

^ = 2-(A'-1)EE/„/cdc, 

where //■ is a J\~-variate Gaussian density function, Dn is a hyper cube defined by: y/äk - 

blAkPk + wT
k9k < Ck and for i = 1,2,..., K, % / fc, 

-Ajfc - V/Ö76;  < Ci  < ^ik - y/Öih \Z{\ < Xik 
(i > Xik - y/a~ibi, d < -Xik - y/äibi   otherwise. 

III. NUMERICAL EXAMPLES AND DISCUSSION 

The steady state error probabilities are presented for the two and three-user cases. The 
signal to noise ratio for user k (SNRk) is defined as ak/N0. In Fig. 2, SWi?i is set to 8 dB 
while SNR.2/SNR! varies from -10 to 8 dB. The value of the crosscorrelation coefficient 

pi2 = 0.7, which represents a high bandwidth efficiency case. Compared to the error per- 
formance of the detector from [1], which utilizes hard decisions, and the performance of the 
decorrelator, a significant improvement has been obtained. 

In the next two examples, Gold codes of length seven (e.g., [2] and [1]) were used for signa- 
ture waveforms. For the two-user case, in a low bandwidth efficiency case with p12 = —1/7 
(Fig. 3) as expected, a performance of the decorrelator is very close to the single user bound. 
Therefore, a negligible improvement is obtained with either the hard or soft tentative deci- 
sions. The three-user case with p13 = 3/7 and p23 = -1/7 is depicted in Fig. 4. Here, the 
two-stage detector with a soft limiter clearly shows the best performance. For a different 
set of crosscorrelation coefficient values (pu = 0.5, p13 = 0.5, and p23 = 0.2) in Fig. 5, 
the difference in the performance between the decorrelator and the two-stage detector is 
larger, with the soft limiter again being a better one. Finally, Fig. 6 depicts the error proba- 
bilities in the case when all the users maintain the same SNR's and the Gold codes are used. 

IV. APPENDIX 

Let fZi be the density function of z;, and f      the joint density function of Z{ and Zj. Then: 

Ji 

,2 
\k 

E{hl)   =   W IT   \2-fz>dz<+ L   fz>dZi 
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E{hikhjk] E 
bi,bj 

/ / V   fziz-dzidzj 

+   1 Jz Y~S9n(z^fz>zidzidZl 

I Iz i~~S9n(z^f^dZtdzi 

J Jz S9n(z^S9n(z^f^dz%dzj 

+ 

+ 

\      r /■ %■ 

E{bihik}   =   -J2    T  
biT-f^dz* 

+     /    bisgn(zi)fZidzi   , 
J1-12 

where £,-, i = 1,2 correspond to the appropriate intervals of Zi, and Z;, i 
spond to the appropriate rectangular regions in the (z{, Zj) plane. 

= 1, ,4 corre- 
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APPENDIX B: PART III 

BOOTSTRAPPED DECORRELATING ALGORITHM FOR 
ADAPTIVE INTERFERENCE CANCELATION IN 

SYNCHRONOUS CDMA COMMUNICATIONS SYSTEMS 

by 
Yeheskel Bar-Ness, Zoran Siveski and David W. Chen 

ABSTRACT 

A code division multiple access detector that employs a combination of a correlation detector 
and a multiuser adaptive interference canceler was previously proposed by the authors. The 
weights of the canceler are adaptively controlled by the steepest descent algorithm using the 
minimum power criterion of the canceler outputs. It was shown that such a canceler sub- 
stantially outperforms the decollating detector and has almost the same error probability 
as a canceler that uses reliable estimates of the received signal energies. In this paper, a 
different weight control criterion based on minimizing the correlation between the signals 
at the outputs of the canceler is used, and its performance is compared to that obtained 
with the minimum power criterion. It is shown that both cancelers have almost the same 
performance, particularly when SNR is modestly high. Although it is not shown in this 
paper, we believe that minimizing correlation rather than power outputs is a more suitable 
criterion when dealing with highly dispersive channels. 

I. INTRODUCTION 

A conventional single user detector implemented in the Code Division Multiple Access 
(CDMA) system consists of a bank of filters, each one matched to the signature sequence of 
the particular user. The sampled output of each matched filter, besides the desired signal, 
contains the residual interference from all other users. In particular, for mobile and wireless 
personal communication the choice of CDMA is attractive because of its potential capacity 
increase and other technical factors, such as anti-multipath fading capability. However, for 
satisfactory performance, one must consider the effect of the "near-far" problem. So far, 
practical systems have used power control to combat this problem. Commercial digital cel- 
lular systems based on CDMA, and which use stringent power control are described in [1]. 
They offer capacity increases over TDM A. A different approach for combating the near-far 
problem was suggested by Verdu [2], where, an optimum receiver in the multiuser interfer- 
ence environment was proposed and shown to eliminate the near-far problem and provide 
much improved performance. The improvement comes at the expense of high computational 
complexity. A class of suboptimum receivers that uses decorrelating detectors and which 
is based on the linear transformation of the sampled matched filters' outputs was consid- 
ered in [3] and [4]. The decorrelating decision-feedback detector presented in [5] utilizes the 
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difference in received users' energies where the decisions of the stronger users are used to 
eliminate interference on weaker users. 
Another approach for suboptimum multiuser detectors with low complexity was proposed in- 
[6] and [7]. The performance of some of these suboptimum schemes is close to the performance 
of the optimum detector. Particularly when the power of the interferes increase, they become 
indistinguishable. However, these schemes have to perform an estimation of the received 
signal energies, knowledge of which is required for the detector's proper operation. 
Still another approach for improving the performance of CDMA systems in multiuser envi- 
ronments is implementing adaptive algorithms for signal separation [8, 9]. 
In contrast to conventional interference cancelers, wherein the interference to desired signal 
ratio is high, at the output of the matched filter of a Direct Sequence Code Division Multiple 
Access (DS/CDMA), the desired signal is higher and the designer's aim is to further reduce 
the interference. Unless special arrangements are made, conventional cancelers are useless 
for removing interference in CDMA systems. Such an arrangement includes, for example, 
the use of a reference in the form of an estimate of the desired signal, which can be obtained 
by a training sequence, etc. Clearly, such an approach is difficult, particularly in vehicular 
communication. Variable desired signal-to-interference ratios resulting from the "near-far" 
problem make the difficulty even worse. Instead, we used in [9] and in this paper, the 
tentative decision on the data following the decorrelation transformation (see Figure 1). 
When dealing with an adaptive scheme, the questions are what kind of performance index 
and which algorithm to use. While the minimum power criterion was implemented in [9], 
here we propose to use a special form of decorrelating algorithm frequently used in neural 
networks and other applications of signal separation [10,11]. 
In Section 2, the system model of the adaptive canceler will be described and the decorre- 
lating algorithm will be presented. An analytical expression for the equations from which 
the steady state mean value of the controlled weight will be given and simplified using some 
approximation particularly valid for reasonably high SNR's. The output error probability is 
calculated in Section 3 (using the aforementioned approximation), then exact computation 
of this probability for the case of two users is given in Section 4. Section 5 contains compu- 
tational and simulation results for different signal's scenarios, after which some conclusions 
are drawn. 

II. THE ADAPTIVE CANCELER: MODEL AND ANALYSIS 

A synchronous CDMA receiver considered here consists of a bank of filters (matched to 
the users' signature sequences) front-end, followed by samplers and the decision system, as 
depicted in Fig. 1. 
The received signal r(t) is expressed as: 

K 
r(*) = E E h{i)yfiTkSk{t ~ iT) + n(t) (1) 

where bk(i) € { —1,+1} is the k-th user's data bit in the z-th time interval and n(t) is the 
additive, zero mean, white Gaussian noise with the two-sided power spectral density N0/2. 
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The received energy of the fc-th user signal, unknown to the receiver, is denoted as ak. The 
signature sequence sk(t), of the same duration T as a data bit, is known to the receiver. The 
sampled outputs of the bank of matched filters in the i-th bit interval can be expressed as: 

x(i) = VAb(i) + n(i) (2) 

For the sake of convenience, the index i will be omitted elsewhere in the text. In (2), 

x = [x!,x2,..., xK]T, b = [61, 62, • ■ ■, bK], A = diag^, y/äi,..., yM is a diagonal matrix 
and n = [ni,n2,... ,nK]T. The (&,j)th element of the symmetric cross-correlation matrix 

V is defined as: 

pkj= I   sk{t)s3{t)dt        k,je(l,2,...,K) 
Jo 

with pkk = 1- The covariance matrix of a zero mean Gaussian noise vector n is, 

E{nnT} = f<P 

The outputs of the decorrelator are given as: 

z = V~1x = Ab + V-1 n Ab + rn = Ab + £ (3) 

where T is the inverse of V, and £ = Tn. Let 6 = [Sx, 62, • ■ •, bK\    be the decision output 

of the decorrelator defined as: 
b = sgn(z) 

Then the canceler's output is given by: 

where 

W 

y 

0 

w2i 

X WTb 

(4) 

(5) 

U)12 

0 
WiK 

W2K 

WK1     WK2     ■ ■ ■ 

The output for the fc-th user can be expressed as: 

Vk — %k - wk bk (6) 

where wk is the k-th column vector of VT with the element wkk deleted, and bk is the vector 
obtained from 6 by deleting the element bk. The multidimensional canceler structure is the 
same as the one termed in an array processing sidelobe canceler, except for the fact that for 
auxiliary signals we are using the decision outputs of the decorrelator. 
For controlling the weights, we use the steepest descent algorithm, which simultaneously 

reduces the absolute value of the correlation between the data output bm of channel m and 
all other outputs of the canceler (before decision). That is the weight wmi is controlled by 

the recursion 
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wmi *- wmi - fiE{ytsgn(ym)}    for 1 <l,m< K    l^m (7) 

To see the logic behind this recursion for controlling the weight we refer to Fig. 2, which 
is the special case of three users. Recursion (7) reaches steady state in the mean when 
E{yisgn(ym)} = 0. Notice that w2i, for example, is used to cancel residue of data b2 at the 

output y\. It will settle down only when that residue (being correlated with 6) is zero. But 

any reduction of b2 at y\ will improve 6i (smaller error) and, hence, will be more effective in 
reducing the residue of 6i at j/3 and y2 through the control weights w\2 and 1013. Therefore, the 
process of residue cancelation is enhanced successively, which justifies the name "bootstrap." 
In vector form, by using the notation of Eq. 6, we write: 

wk ±-wk-iiE{yksgn(yk)} (8) 

where again yk is obtained from the column vector y by deleting the element yk. 
The steady state would be reached if 

E{yksgn(yk)} = 0,     for k = 1,2,..., K 

This means that K(K — 1) nonlinear equations have to be evaluated. (An example of K = 2 
for finding the steady state values of w21 and u;12 will be given in the next section). 
In the general case, it will be assumed that the signal-to-noise ratios (SNR's) are large enough 
such that the main contribution to the output error is the multiuser interference. 

Therefore, E{yksgn(yk)} — E{ykbk) can be approximated as: 

E{ykbk]   w   E{ykbk}(l-2Pr(bkmenoT)) 

=   E{ykbk}(l-2Pek) (9) 

Substituting (6) into (9) with xk taken from (2), we get: 

E{ykbk}   «   E{(yä^bk + plAkbk + nk-wlbk)bk} 

•(l-2i\ ), 

and the algorithm will result in having: 

^TkE {bkbk} + E { (pT
kAkbk) bk} 

+E{nkbk}-E{(wk
rbk)bk} = 0 

It is easy to show that E {bkbk} = 0, E {(p£Akbk) bk} = AT
kpk, E {nkbk} = 0, and 

E {(wT
kbk) bk) = Bkwk, where Bk = diag [E {bfbj}], j = 1, 2,..., K    j ^ k. Therefore, 

wk = Bk
lAkPk (10) 

where we used the fact that Ak is diagonal. 
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III. OUTPUT ERROR PROBABILITY 

(11) 

The output error probability for the k-ih user is evaluated as follows: 

Pek    =   Ei   ,   t Pr{bk m evrov\bk,bk,bk} 
k bk,Ok,Ok 

=   - E   [Pr{nk > y/E~k-bT
kAkpk + wT

kbk} 

bk,bk 

+    Pr{nk < -y/äi - bT
kAkpk + wlbk]   ■ 

Pr{bk\bk}Pr{bk) 

Since Pr{bk} = 2~(K~^ and nk is a zero mean Gaussian random variable we can write: 

Pek=2~K  E   [Pr{nk>^-k-bT
kAkPk + wT

kbk} 

bk,bk 

+ Pr{nk > y/rk + bT
kAkpk - wT

kbk]\ Pr{bk\bk) 

Also 

Pr{bk\bk) 

=   Pr{sgn(v/ö76i + &), • • • ,sgn(y/ak-ibk-i +6-1), 

sgn(y/ak+1bk+i + £k+i), ■■■, sgn(v/ö^6x + £K)} 

—   Pr{b\i\ > —y/älbxbx,..., bk-i£k-i > 

— y/a,k-ibk-\bk-\, bk+iCk+i > —i/ak+ih+ibk+i, 

• • •, bK^K > -y/ä^bKbK} 

=   Pr{h£i < yfalbxbx,..., ^-16-1 < A/öÄ^T^-I^-I, 

bk+i£k+i < y/äk+ih+ih+i, ■■-, bK(K < y/ä^bKbK} 

=   Pr{-bk\-bk} (12) 

Applying the result of (12) to the second term in (11) enables splitting the latter into two 

equal terms. Therefore 

1 pek    =    ^T  E   [Pr{nk> ^rk-bT
kAkpk + wT

kbk} 

bk,bk 

Pr{bk\bk} 

Substituting (10) in to (13) we finally obtain 

1 

(13) 

P. ek 2K-1 

^      , y/äi- (bk-bkBk1)   Akpk £ Q I L^_J 1 Pr{h]h} 
bt,b k,Uk 
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where Pr{bk\bk} is the integral of the {K — 1) variate Gaussian density function. 

The Two-user Case 

For this case, one can solve for the optimal weight without the need for the approximation of 
(9), although the resulting two simultaneous equations in 1021, IÜ12 are highly nonlinear and 
require numerical method for its solution. The calculated weight can then be substituted in 
the following equation to obtain the error probability: 

Pei(e 

where, 
t2'2dt 

IV. COMPUTATIONAL AND SIMULATION RESULTS 

Two sets of examples are used to examine the performance of the proposed canceler. In the 
first set, we consider the two-user case with cross correlation coefficient p12 = 0.7. It can 
certainly represent a high bandwidth efficiency case. Here we find by computation the error 
probability as a function of the SNR's difference of the two users while the SNR of user 1 
is kept constant at 8 dB and 12 dB. This is shown in Fig. 3 and Fig. 4, respectively. In 
the figures, we added the results of simulation, those obtained by using the approximation 
introduced in Eq.(9), and those resulting from the decorrelating detector of Verdu [3]. 
In the second set of examples, Gold sequences of length seven (frequently used in the liter- 
ature, e.g., [4] and [6]) are chosen for signature waveforms. The rationale for such a choice 
is that Gold sequences are regularly used in an asynchronous CDMA environment and the 
study of its proposed synchronous counterpart may provide a useful indication of the per- 
formance of the former. The cross-correlation matrix V in this case is: 

7-1      3      3      3 ~ 
-1      7-1      3   -1 
3-1       7-1    -1 
3      3-1      7-1 
3   -1    -1   -1       7 

'-7 
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In Fig. 5, we depict the result of error probability of user 1 having SNR=8dB as a function 
of the SNR of the other four users (taken to be the same). These results are obtained by 
simulations and computation with the approximation suggested in Eq.(9). For comparison, 
the results of the decorrelating detector are also included. Fig. 6 is the same except for 
user 1, where SNR=12 dB. Finally, Fig. 7 depicts the error probabilities of user 1, whose 
interferences are determined by the first column of V and having the same power as the 
other one to four interfering users. For comparison purposes we also show the results ob- 
tained by using the minimum power criterion and, as reference, those obtained when using 
the decorrelating detector. It was established that the case of equal user power represents 
approximately the worst case scenario for user 1. Also notice from V that other users suffer 

lower levels of interference by other users. 

V. CONCLUSION 

An adaptive interference canceler for the multiuser CDMA system is proposed in this paper. 
For the control of its adaptive weights, we suggested using a special form of the outputs' 
decorrelating algorithm, customarily used in neural networks and other applications of blind 
signal separation and equalization. It was shown that, particularly for a high level of interfer- 
ing signals, the canceler outperforms the decorrelating detector, which is regularly suggested 
as a mean for combating the near-far problem without excessive hardware complexity. Al- 
though it is difficult to tackle the algorithm analytically, an approximation, suggested in this 
paper, made the task possible. Both the algorithm in this paper and the minimum output 
powers algorithm, previously proposed by the authors, depict similar error probability per- 
formance, satisfactory for candidacy in controlling adaptive interference cancelers for CDMA 
systems. Although we assume synchronous data signals in both cases, extension to the asyn- 
chronous case is also possible. Examination of the performance of these two cancelers for 
dispersive channels and, in particular, the difference in behavior of the two algorithms in 

such situations is the topic of current research. 

References 
[1] K.S. Gilhousen, I.M. Jacobs, R. Padovani, A.J. Viterbi, L.A. Weaver, and C. Wheatley 

III, "On the capacity of cellular CDMA system," IEEE Trans, on Vechicular Technology, 

vol. VT-40, No. 2, pp. 303-311, May 1991. 

[2] S. Verdu, "Minimum probability of error for asynchronous Gaussian multiple access 
channels," IEEE Trans. Inform. Theory, vol. IT-32, No. 1, pp. 85-96, Jan. 1986. 

[3] R. Lupas and S. Verdu, "Linear multiuser detectors for synchronous code division mul- 
tiple access channels," IEEE Trans. Inform. Theory, vol. IT-35, No. 1, pp. 123-136, Jan. 

1989. 

[4] R. Lupas and S. Verdu, "Near far resistance of multiuser detectors for synchronous 
channels," IEEE Trans. Comm.,, vol. COM-38, No. 4, pp. 496-508, April 1990. 

85 



[5] A. Duel-Hallen, "Decorrelating decision-feedback multiuser detector for synchronous 
code division multiple access channel," IEEE Trans. Comm., vol. COM-41, pp. 285- 
290, Feb. 1993. 

[6] M.K. Varanasi and B. Aazhang, "Multistage detector in asynchronous code division 
multiple access communications," IEEE Trans. Comm., vol. COM-38, No. 4, pp. 509- 
519, April 1990. 

[7] M.K. Varanasi and B. Aazhang, "Near-optimum detector in synchronous code division 
multiple access system," IEEE Trans. Comm., vol. COM-39, No. 5, pp. 725 -736, May 
1991. 

[8] Z. Siveski and Y. Bar-Ness, "Adaptive two-stage detection scheme in synchronous two- 
user CDMA systems," MILCOM '93, pp. 774-778, October 1993, Boston, MA. 

[9] Z. Siveski, Y. Bar-Ness and D.W. Chen, "Error performance of synchronous multiuser 
code division multiple access detector with multidimensional adaptive canceler," ac- 
cepted for publication in European Transactions on Telecommunications and Related 
Technologies. 

[10] A. Dine and Y. Bar-Ness, "Convergence and performance comparison of three differ- 
ent structures of bootstrap adaptive algorithm for multisignal co-channel separation," 
MILCOM '92, pp. 913-918, October 1992, San Diego, CA. 

[11] R. Kamel and Y. Bar-Ness, "Blind decision feedback equalization using decorrelation 
criterion," Communication Theory Mini Conference, Globecom '93, December 1993, 
Houston, TX. 

Fig. 1 Proposed multiuser receiver scheme 

86 



Fig. 2 Three-user canceler 
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APPENDIX B: PART IV 

ADAPTIVE MULTIUSER CDMA DETECTOR 
FOR ASYNCHRONOUS AWGN CHANNELS 

by 
Zoran Siveski, Lizhi Zhong and Yeheskel Bar-Ness 

ABSTRACT 

A multiuser detector in an additive white Gaussian noise, code division multiple access 
channel is proposed and analyzed. The detector utilizes the decorrelated tentative decisions 
obtained in the first stage to estimate and subtract multiple access interference in the second 
stage. The novel feature of the detector is the adaptive manner in which the multiple access 
interference estimates are formed, which renders prior estimation of the received signal am- 
plitudes uneccessary. The detector is near-far resistant, and is shown to provide substantial 
performance improvement over the conventional and decorrelating detector, particularly in 

the presence of strong interfering signals. 

I. PRELIMINARIES 

In a multiuser environment, K users share the same channel with the unit energy signa- 

ture waveform sk(t), 
k = 1,... K, of the duration T assigned to each of them. The information bits bk(i) G {±1} 
for the symbol interval i have the same duration T. The waveform r(t) at the input of the 
receiver which has a bank of matched filters as its front end, is expressed as: 

KO = E E h{i)yfask{t -iT- rk) + n{t) 
k=l    i 

where n(t) is a zero-mean, white Gaussian noise with the two-sided power spectral density 
iV0/2, and ak and rk are the received energy and relative delay for user k, respectively. While 
it is assumed that precise relative delay estimates are available for all users, their amplitudes 
are considered to be unknown to the receiver. In reality, they are slowly time-varying; 
however, here they are assumed to remain unchanged over the transmission horizon for each 

user. 
Without a loss of generality, the attention will be on detection of bit 0 of user 1, and it 

will be assumed that 0 = rx < r2 < ... < rK < T. The sampled output of the matched filter 

for user 1 is then: 

K 

Xl(Q) = VoTMO) + Y^y/äk[PkM-l) + Pikh{0)] + ni(0) 
fc=2 
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The normalized partial crosscorrelations pki and pik, for k = 2,. . ., K are: 

Pki = /    S!(t)sk(t + T -Tk)dt, pu= /    si(t)sk(t - n)dt 
Jo Jo 

Also, ni(0) = Jo n(t)si(t)dt is a zero-mean Gaussian random variable with variance iVo/2 

Using the vector notations where p1   —  [p2i,-■ • IPKI,PI2T • • ,PIK]
T

,  &i(0)   =   [62 (-l)»--*5 
T r Jlj     o 1 

bh'{ —1),&2(0), ...   ,^A"(0)]   , Ai = rfia^f-y^,..., A/ö^], and A = , the matched 

filter output is: 
x1{0) = yföb1{0) + plAb1{0) + n1{Q) (1) 

The multistage detector forms an estimate of the multiuser interference as the weighted 
vector of tentative decisions on symbols that interfere with &i(0) directly, and subtracts it 
from the matched filter output. The final decision statistics yi(0) and the corresponding 
final decision for bit 0 of user 1, &i(0), are: 

yi(0) = xj(0) - <(0)6X(0),   Si(O) = sgn^O)) (2) 

where 6i(0) = [^(^1), • • •, &A'(~1), ^2(0),. - -, &A"(0)]
T
 is the vector of tentative decisions 

affecting bit 0 of user 1, and Wi(0) = [w^i ,..., w(
Kl , w\i ,..., ^A'I]

T
 
are ^ne corresponding 

weights. 
Such a detector was first proposed in [l] and it utilized fixed weights that required prior 

estimation of the received signals' amplitudes. Several classes of similar multiuser detectors 
that use soft-decision tentative statistics were proposed and analyzed in [2]. 

The multistage detector proposed here operates without the knowledge of the received 
signals' amplitudes, and without the need to perform their prior estimation in order to set 
the values of the weights Wi(0). Instead, the weights are determined in an adaptive manner. 

II. MULTISTAGE DETECTOR ANALYSIS 

In this paper, 1-shot decorrelated tentative decision statistics are considered. This decor- 
relator, described in [3] for a two-user case, can be extended in a straightforward manner 
for an arbitrary K. The vector of the decorrelator outputs Zi(0) and the corresponding 
tentative decisions affecting bit 0 of user 1 61 (0) are: 

z1(0) = A61(0) + ^1,   61(0)=sgn(z1(0)) (3) 

where £x = [^(—1), • • • I£K( — 1),6(0)> • • • i6i"(0)]T is a zero-mean Gaussian vector having 
the covariance matrix Si, whose diagonal elements are denoted by cr| . 

For controlling the weights, a steepest descent algorithm which minimizes the output 
signal power E{yl(0)} is used.3   The weights that achieve this are obtained by iterative 

3The synchronous version of the detector, and its stability and convergence analysis were presented in [4] 
and [5] respectively. 
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search: 

= «Ji(0) + /iE{y1(0)61(0)} (4) 

That is, the algorithm, by minimizing the output power, forces the correlation between 
the desired output signal and vector of tentative decisions of interfering signals to zero. In 
practice, the expectation operation is replaced by time averaging. 

The steady state values of the weights are evaluated as follows: 

0 = -\e^fivim = EMo)him 

=   EixWhiiOft-EtfiiotfiOftw^O) (5) 

It is easy to show that £{ni(0)&(i)} = 0, for k + 1, i = -1,0, so the first of the two 
expectations above is: 

Eix^b^O)} = AE{b1(0)b^(0)}p1 (6) 

Clearly, £{&i(0)6f (0)} is diagonal; therefore, the system of K - 1 linear equations (5), 
together with (6), gives the steady state values of the weights affecting the first output as: 

rX. x. 
Wl(0) = [£{6i(0)&i (0)}j     AEib^b, (0)}^ (7) 

The expressions for the expectations in (7) are shown in the Appendix. 
The output error probability is evaluated as follows: 

■=    \      £       [Pr{n1(0)>^Tl-pT
1Abl(0) 

6i(o),6i(o) 

+   wl(0)6i(0)} + Pr{m(0) < -V5T - PiAhiO) 

+    ™f (0)^(0)}] Pr{61(0)|61(0)}Pr{61(0)} 

Since Pr{&i(0)} = 2~(2K~2\ and the above expression contains pairwise identical terms (see 
(A3) in the Appendix), it can be written as: 

Pei = 2-(2A'-2)      £      [Pr{ni(0) > V5T 

6i(o),6i(o) 

-tfAb^O) + toftO^O)}! Pr{6!(0)|6i(0)} 
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Finally: 

pei  = 2-(2*'-2)    £    JMMo)IMo)} 
6i(o),6i(o) 

^ ^ ' (8) 

where Pr{&i(0)|6i(0)} is the integral of the (2K — 2)-variate Gaussian density function: 

PrfaWMO)} = l 

\2K-2\ CV I 

CO 

k=2,...,K     «=-1,0 

III. NUMERICAL EXAMPLES AND DISCUSSION 

In all the examples, the signal-to-noise ratio for user k is defined as SNRk = cik/No. 
Figure 1 shows, for two asynchronous users, the probability of error of user 1 versus SNR\. 
The relative energy e\ is defined as e'i = / s\[t)dt. The case labeled (1) in the figure 
corresponds to a relatively weak level of interference. It describes a rather unfavorable 
scenario for this multistage detector due to tentative decisions which are not too reliable. This 
results in the performance of the detector at higher values of SNR\ to be somewhat inferior 
to the decorrelator, whose performance is insensitive to the level of interference. However, 
the multistage detector outperforms the conventional detector. When the interference is 
stronger (case (2)), due to the reliable tentative decisions, the multistage detector by far 
outperforms the other two. 

Figure 2 shows the probability of error versus the relative interference energy for the 
fixed SNR\. The multistage detector clearly outperforms the decorrelator, and achieves the 
single-user bound for the relative interference level above 5 dB. 

Gold sequences of length 7 [6, Fig. 4] are used as the signature sequences in the next 
examples. Figure 4 shows the probability of error for user 1 when its energy and the energy 
of the interferer are the same. The worst case and the average error performance over the 
values of the relative delay T2 are shown. In this scenario the multistage detector outperforms 
both the conventional and the decorrelating detector, and its average performance, due to 
the good crosscorrelation properties of the two signature sequences used, is very close to the 
single user-bound. 

Figure 4 shows the error probability of user 1 as a function of relative delays r2 and r3, 
with the SNR's of all three users equal to 12 dB. The probability of error of the multi- 
stage detector, averaged over all delay pairs is 7 x 10~5. (The corresponding values for the 
decorrelator and the conventional receiver are 9.4 x 10~4 and 1.2 x 10~2, respectively.) 
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And finally, Figure 5 shows the probability of error versus the relative interference ener- 
gies for the SNRx fixed to 8 dB, and r2 = T/7, r3 = 5T/7. Again, the multistage detector 
performs better than the decorrelator and approaches the single user bound as the interfer- 

es' energies increase. 

IV. CONCLUSION 

A two stage multiuser detector is proposed. Its novel feature is the adaptive way in which 
the multiuser interference estimates are formed. This detector does not require prior esti- 
mation of the received signal amplitudes, and is therefore expected to perform better under 
the channel amplitude varying conditions. The steady state error performance is much bet- 
ter than that of the conventional receiver, and in most cases outperforms the decorrelating 

detector as well. 

V. APPENDIX 

The elements on the main diagonal of E \ 6i(0)6x (0) > are equal to unity, while the off- 

diagonal ones are: 

E {hizMj)} 

=   E {sgn (y/a~kbk{i) + 6(0) sSn (V^MJ) + 60'))} 

bk(i)MU) 

- Pr{£k(i) < ^Tkbk(i) , 6(i) > yfiihtj)}] 

i,j = -l,0       k,l = 2,...,K    k±l 

Each probability term in the above summation defines four integrals. Therefore: 

E{bk(tyi{j)} = {~^- E / L   fte&dt,     (Al) 
Z        m=l J    JDm 

where f^{ denotes the bivariate Gaussian density function of random variables £k(i) and 
£i(j), and Dm is an appropriate rectangular region of integration. 

The diagonal elements of E \ 6i(0)6x (0) > are: 

E{bk(i)h(i)}   =   1-2QU^-\ 

k = 2,...,K    i = —1,0       (A2) 

with 

Q(x) = - 
/2TT ^» = if^'2Ä 
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By definition: 

Pr{6x(0)M0)} 

=    Pr{sgn(V^62(-l) + 6(-l)),---, 
sgn (y/ü£bK(-l) + M-1)), sgn (y/a^b2(0) 

+6(0)), • • •, sgn {y/^bK(0) + CK(0))} 

=    Pr{62(-1)6(-1) > -yfchi-lM-l), ■ • •, 
bK(-l)U-(-l) > -V^bK(-l)bK(-l), 
fe2(o)6(o)>-V^62(o)62(o),..., 
Öä-(0)6<(0) > -y/^bK{0)bK(0)} 

=   Pr{62(-1)6(-1) < ^62(-l)&2(-l), • • •, 

^(-l)a-(-l) < yfi*bK{-l)bK{-l), 
62(0)6(0) <v^^(0)62(0),..., 
Mo)fr(o) < v^MofMo)} 

=   p^-fe^l-fe^O)} (A3) 
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APPENDIX B: PART V 

ADAPTIVE MULTIUSER BOOTSTRAPPED DECORRELATING CDMA 
DETECTOR IN ASYNCHRONOUS UNKNOWN CHANNELS 

by 
Yeheskel Bar-Ness, David W. Chen and Zoran Siveski 

ABSTRACT 

For PIMRC uplink multiuser CDMA channels, received signals are time asynchronous, 
and suffer from amplitude fading. The relative signals' bit delays, energy variations, and 
hence the cross-correlation matrix of the received signal, are unknown. Using a novel adap- 
tive algorithm, we propose in this paper a decorrelating detector suitable for particular 
CDMA uplink channels. It is near-far resistant, and can be used by itself if signal-to-noise 
ratios are high, or as a first stage in the two-stage adaptive canceller previously proposed for 

the synchronous CDMA case. 

I. INTRODUCTION 

Multiuser Code Division Multiple Access (CDMA) schemes have become a popular ap- 
proach for personal, indoor, and mobile wireless radio communications (PIMRC). Con- 
ventional single-user detectors implement a bank of filters, each matched to the signature 
sequence of the particular user. The sampled output of each matched filter contains residual 
interference from all other users. In some applications, such as military, the bandwidth is 
not so limited, so that processing gain might be very high and the number of users small 
enough to result in a low level of controllable interference power. In PIMRC applications 
bandwidth is scarce and the number of users is large and continually increasing. Particularly 
for uplink cellular systems, the level of interference can be very large (the near-far problem); 
communication is asynchronous; and multipath reception is usual. 

To handle this difficult, time varying communication environment, multiuser detectors 
of different structures have been proposed by many researchers. Some [1] are optimal, com- 
pletely eliminating the near-far problem, although suffering from computational complexity. 
Others [2,3] only suboptimal, assume the knowledge of the cross correlation matrix of the 
different user signature sequences and linearly transform the output of the matched filter to 
obtain uncorrelated signals on which data decisions are made. 

Another approach for suboptimum multiuser detectors with low complexity was proposed 
in [4] and [5]. The performance of some of these suboptimum schemes is close to the per- 
formance of the optimum detector. Particularly when the power of the interferers increases, 
they become indistinguishable. However, these schemes have to perform an estimation of the 
received signal energies, knowledge of which is required for the detector's proper operation. 
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At the Center for Communications and Signal Processing, research for improving the per- 

formance of multiuser CDMA detectors was directed toward using conventional and novel 
adaptive algorithms for interference cancellation and signal separation. For example, in [6] 
and [7], the two-stage multiuser CDMA detector was used in succession with linear trans- 
formation, decorrelation, pre-decision (hard limiter), followed by an adaptive interference 
canceler which used the minimum power criterion. Its error performance was studied and 
shown to be significantly better than the decorrelating detector. A convergence analysis of 
this adaptive detector can be found in [8]. Further improvement in performance, particu- 
larly at a low interference-to-desired signal ratio, was obtained when the pre-decision was 
obtained from a soft-limiter [9]. 

The adaptive interference canceler of the previously mentioned scheme was controlled 
by a different algorithm called the "bootstrapped decorrelating algorithm" in [10,11,12]. 
The idea of using this algorithm is to eliminate, in future study, the need for knowing the 
cross-correlation matrix of the different signals at the output of the matched filter's bank. 

Most of the aforementioned multiuser detectors, adaptive or non-adaptive, assume 
a synchronous data stream of all users and knowledge of the cross-correlation matrix. A 
suboptimum multiuser detector suitable for asynchronous multiuser CDMA environment 
was first proposed in [4]. It utilized fixed weights that required prior estimation of the 
received signals' amplitudes. Several classes of similar multiuser detectors that use soft- 
decision tentative statistics were proposed and analyzed in [11]. 

In a companion paper [12] the 1-shot decorrelating tentative decision statistics of Verdu 
[13] are used. Assuming that the bit-delay overlap between data streams of the different users 
is known, and using an AWGN non-faded channel, the cross-correlation matrices with zero 
and one bit-delay can be calculated and used in a minimum power type adaptive canceler 
similar to the one used with the synchronous channel. 

For the case of the faded channel, with unknown energies of the received signal from 
different users and unknown bit-delays of these signals, the cross-correlation is unknown. 

For this case, which is typical for uplink PIMRC, we propose in this paper an adaptive 
decorrelating detector. It might be used as a first stage for the two-stage canceler proposed 
in [6] and further studied in [7], or by itself if the SNR is high enough so that merely the 
decorrelating detector, near-far resistant scheme is satisfactory. 

After the asynchronous decorrelating model is presented in the next section, the equation 
of the output for the multiuser case is shown as a function of the adaptive weights. A boot- 
strapped decorrelating algorithm for controlling these weights is proposed. For the two-user 
case we find these weights analytically and calculate the corresponding outputs. We find the 
error probability analytically and depict it as a function of the interference-to-desired signal 
ratio. Results of some simulations are shown. 

II. THE ADAPTIVE DECORRELATOR: MODEL AND ANALYSIS 

The proposed asynchronous CDMA adaptive decorrelator consists of a bank of matched 
filters (matched to the users' signature sequences), followed by a sampler at the bit-rate 1/T 
and controllable weights as shown in Fig. 1. 
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Let K users share the same channel with the unit energy signature waveform sk(t), 
k = 1,2, • ■ •, K of duration T assigned to each one. The received input r(t) can be expressed 

as: 
r(t) = E E h(i)yfask(t -iT- n) + n{t) (1) 

fc=i 

where bk(i) G {+1, -1} are the information bits of the fcth user at interval i whose duration 
is T. n(t) is a zero mean, white Gaussian noise with spectral density No/2. ak and rk are the 
received energy and relative delay for user k. They are unknown to the receiver and may be 
taken as random variables. The variation of ak depicts the amplitude fading characteristic of 
the different users. rk may vary with the change of the user's location. In fact each matched 
filter has only to lock onto the sequence of the corresponding signal. Thereafter will be no 
need to know accurately the relative delays. The values of these realtive delays will enter 
into the unknown cross-correlation matrices defined in the sequel. The adaptive algorithm 
will follow changes in cross correlation matrices caused by variations in relative delays, as 
well as amplitude variation due to fading. Let us assume that we have ordered the delays 

such that -T/2 < 7i < r2 < • • • < TK < T/2. 
The sampled output of the matched filter for user m at time i (see Figure 2) is: 

Xm(i)   =/   Sm(t) 
Jo 

K 

Yl h{i)y/äkSk(t -iT- Tfc) + n(t) 
.k=i 

m—1 
(+l)j = y/ä^bm(i) +Y, \fäk{pmkbk{i) + Pkm 'bk{i + 1) 

it=i 

.(-i); + E y/äk(Pmkh(i) + Pkm bk(i - 1) + nm(i) 
k=zm+l 

where: pmk = J0 sm(t)sk(t - iT - rk)dt 

Pkm%   Sm{t)sk(t -{i + 1)T - rk)dt k<m 

p<r£j   sm(t)sk{t -{i- 1)T - rk)dt k > m 

(2) 

(3) 

and without loss of generality, we assume zero delay for the corresponding receiver matching 
code. We also normalize pmm so that: pmm = /0 sm(t)sm(t - iT - rm)dt = 1. Also nm(i) = 
IQ n(t)sm(t)dt is a zero-mean Gaussian random variable with variance N0/2. 

In matrix notation (2) can be written as: 

where: x(i) — [xi(i), x2(i), ■ ■ ■, XK(I)] 

x{i)    =   A[(I + V)b(i) + VT
Lb(i + l) + Pub{i-l) 

+   n(i) 

T 

(4) 
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b(i) = [h(i),..., bK(i)Y , A = diag[^Ja[ iaK 

0        P12 

P21     0 

PKl     PK2 

(+1) 
Pl2 0 

p™   0 

KA'l        PA"2 

P\K 

P2K 

0 

P\K 

P2K 

0 

PL and Vu are the lower and upper triangular matrices of V respectively, and I" is the unit 
matrix. 

To generate the decorrelator input ym(i), we will weigh xm(i), m = 1, • • • , K such that: 

m—1 

ym(i)   =   xm(i) - Y^(wkmXk{i) + wkmxk(i + i)) 
k=\ 

- Yl    {WkmXk(i) + WkmXk(i-l)) 
k—m-\-\ 

or in matrix notation: 

y(i) = x(i) - WTx(i) - wlx(i - 1) - WT
Lx{i + I) 

where: y(i) = [y^i), y2(i),..., VK{i)Y 

(5) 

(6) 

W 

W 

0 Wi2 

w2i 0 

WK1 . . . 

0 w12 

w2\ 0 

WK1 . . . 

WiK 

w2k 

0 

W2k 

and WL and WJJ are the lower and upper triangular matrices of W respectively, after 
decision: 
b(i) = sgn[y(i)}. 

For controlling the weight matrices W and W, we use the steepest descent algorithm, 
which simultaneously reduces the absolute value of the correlation between the decorrelator 
output ym(i) and all other outputs of the decorrelator (after decision) at time i, i — 1 and 
i + 1 respectively. The weights wmk and wmk for all 1 < k, m < K, k ^ m are controlled by: 

Wmk <— wmk + pE{ym(i)sgn(yk(i))} 

102 



wmk <- wmk + ßE{ym(i)sgn{yk{i - 1))}    k > m 

wmk^wmk + pE{ym{i)sgn(yk(i + l))}    k<m (7) 

Here we have 2K(K - 1) weights to be controlled, twice the number we need for the 
synchronous case (An example of K=2, for finding the steady state values of u>12, w2i, wu, 

w2i will be given in the next section). 
In the general case, the signal-to-noise ratios (SNR's) are large enough such that the 

main contribution to the output errors is due to the multiuser interference. Therefore: 

E{ym(i)sgn(yk{i))} 

»   E{ym(i)bk(i)}(l - 2Pr(sgn{yk{i)) in error)) (8) 

and similarly for the other terms. With these approximations whose validity was examined 
in [10], we can find the steady state values of wmk and wmk 1 < fc, m < K, m ^ k by equating 
E{ym(i)h(i)}, E{ym(i)bk(i - 1)} and E{ym{i)bk{i + 1)} to zero, respectively. 

III. THE TWO-USER CASE 

For this case (2) becomes: 

Xl(i) = y/ä^bi(i) + p\2^b2{i) + p2\\fääbi{i - 1) + nx(i) 

x2(i) = y/äihii) + Pi2y/ä\h{i) + P2\y/ä\h{i + 1) + n2{%) (9) 

and the decorrelator output ym(i), m = 1,2 from (5) becomes, 

t/i(z) = xi(i) - w12x2(i) - w21x2(i - 1) 

3/2(0 = x2(i) - w2ix1(i) - w12xx{i + 1) (10) 

A.   Algorithm 

Correspondingly equations (7) become: 

W12 <- iüi2 + ^{^1(0^^(^2(0)} 

W21 <- w21 + pE{y2(i)sgn(yl(i))} 

W21 *- w21 + fiE{y2(i)sgn(yi(i + 1))} 

W22 *- W22 + fiE{y2(i)sgn(y1(i - 1))} (11) 

These are four non-linear equations that must be solved to get the four different weights. 
With the approximation of (8) the following four linear equations should be solved instead. 

E{yi(t)b2(z)} = 0       E{y2(z)b1(i)} = 0 

E{yi(i)b2(i - 1)} = 0      E{y2(iMi + 1)} = 0 (12) 
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B.   Optimal weights 

Equation (12) leads to: 

P\2\ß~2 - W21\fÖ2 — 0     =>     U)2l = Pl2 

Pi2\/üi - W\iy/ä\ = 0    =r>    Wi2 = P\2 

Piwfii. - wi\yßi = 0   =4>   u)2i = P21 

P2iy/äi - w\2\/ä\ = 0   =>■   tüi2 = p2i 

C.   Optimal Outputs 

Substituting (13) in (10) together with (9) we get: 

3/i (0    = 

(13) 

y/älh(i)(l - Pi2 ~ P21) ~ Pl2p2ly/älb1{i ~ l) 

Pi2P2i\/üib1{i + 1) + 6 (14) 

where £1 = n^i) - pi2n2(i) - P2in2(i - 1) 
Noting that ni(i), 11,2(1) are correlated, we calculate in Appendix A cr^ as:  <ji   = (1 — 

P212-P22l)f 
The output yi(i) from eq.(15) depicts the fact that in the steady state the decorrelator 

output is multiuser interference free, and hence it is near-far resistant. However, it contains 
inter-symbol interference (ISI). The latter can be eliminated by a suitable equalizer custom- 
arily used with fading channels. 

D.   Probability of Error 

The probability of error of detecting bi(i) from y\(i) is given (without the equalizer) by 
(See Appendix B) as: 

Pei   =    4 Q 

+   2Q 

+   Q 

'y/ä{(l - p\2 - p2
21 - 2p12p2iY 

oT(l - P\2 - p2
21)\ 

°6 
V^il1 - Pit ~ P\\ + 2Pl2p2l) 

°ti 
(15) 
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IV. NUMERICAL AND SIMULATION EXAMPLES 

Fig. 3 depicts the probability of error of Eq.(15). A constant SNRa of 8dB was used, 

p12 = 0.6, and p21 = 0.2 was assumed in these computations, SNR2 was varied. For compar- 
ison this curve contains the results of simulation with and without equalization. In Fig. 4 
we show the error probability of user one when SNRa and SNR2 are varied from 4-20 dB. 
For comparision the curve contains the result of computation when the cross-correlation is 

known and linear transformation [13] is used. 

V. CONCLUSION 

An adaptive multiuser decorrelating detector for asynchronous CDMA was proposed in 
this paper. The signals' energies and the relative delays between the data streams are as- 
sumed unknown. Hence, it is suitable as a model for asynchronous fading PIMRC uplink 
channels. Using a novel bootstrap blind decorrelating algorithm, it is shown that its steady 
state leads to a total near-far resistant decorrelation. Computation as well as simulation 
support this conclusion. Although the two-user case was used as an example, it can be 
extended to the multiuser case. The decorrelating detector can be used as a first stage for 
the two-stage canceler previously proposed [6-7] when dealing with uplink PIMRC channels. 

VI. Appendix A 

al    =   E{nl(i) + pl2nl(i) + P
2

21nl(i-l) 

-    2p12ni(i)n2(i) - 2p21rii(i)n2(i - 1) 

+   2p12p21n2(i)n2(i - 1)} 

E{ni{i)n2{i)} = p12f, E{ni{i)n2(i - 1)} = pnf, and E{n2(i)n2{i - 1)} = 0. Hence: 

4 = (I-ä-^)T 
VII     Appendix B 

Pei    = ^Ebl{i-.1)bl{i+1){Pr{yi(i) > 0\h(i) = -1} 

+ Pr{yi(i) < 0\h(i) = 1}} 

= £Mi_i)6l(,-+i){Pr{£i > VöT(l - Pu - P2
2l) 

+ Pl2P2l\ßlW{l - 1) + P\2p21\filbi{i + 1)}} 

= \{Pr{£i>yfil{l-p\2-p\i-1PuPn)} 

+ 2Pr{6 > V5T(1 - P12 - P21)} 

+ Pr{^ > ^{1 - p\2 - p\x + 2pl2p21)}) 
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-In f  \Al(1 ~ Pit ~ P221 ~ 2Pl2P2l] 

fa~i{i- P\2 - p2
21)\ 

+   2Q 
V ^i / 

'y/äiO-- Pit - Pli +2pi2p2i) +    Q 
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Figure 4: Probability of error of two decorrelators, p\2 = 0.6, p2i = 0.2 
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APPENDIX B: PART VI 

CONVERGENCE AND STABILITY ANALYSIS OF A SYNCHRONOUS 
ADAPTIVE CDMA-BASED PCS RECEIVER 

by 

Bin Zhu, Nirwan Ansari, Zoran Siveski and Yeheskel Bar-Ness 

ABSTRACT: 

A thorough investigation on the convergence and stability of a recently proposed adaptive 
synchronous CDMA receiver is presented in this paper. The receiver consists of a decorre- 
lator at the first stage and an adaptive interference canceler at the second stage. By using 
a steepest descent algorithm to adaptively control the weights, the knowledge of the users' 
received powers is no longer required. It was shown that the system has good "near-far" 
resistance, and can approach optimum performance when the users' SNRs are high. Suffi- 
cient conditions for the receiver to achieve convergence are derived, and their properties are 

analyzed. 

I. INTRODUCTION 

An optimum receiver in the multiuser environment which performs significantly better than 
the conventional receiver and also eliminates the infamous near-far problem, albeit at the 
expense of high computational complexity, was first proposed in [1]. Several suboptimum 
receivers have been proposed to achieve the reduced computational complexity at the cost of 
lower performance [2], [3]. The suboptimum two-stage decorrelating receiver analyzed in [3] 
is one of them. The performance of some of these suboptimum schemes is close to the per- 
formance of the optimum detector, particularly when the power of the interferers increases, 
they become indistinguishable. However, these schemes have to perform an estimation of the 
received signal energies, knowledge of which is required for the detectors' proper operation. 
In [4] the detector for synchronous code division multiple access (CDMA) systems that con- 
sists of a decorrelator and a nonlinear multidimensional interference canceler whose weights 
adaptively adjust to the incoming signal was proposed, and its steady state error perfor- 
mance analyzed. It was shown that it provides significantly better performance than the 
decorrelating detector. This is especially true under the most critical conditions in multiuser 
environments, such as near-far situations and high bandwidth efficiency utilization. In the 
presence of strong interference, the proposed detector was shown to achieve the performance 
of the optimum detector. In the presence of weak interfering signals it performs better than 
its non-adaptive counterpart in [3], one that requires prior estimation of the received signal 
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energies. 
This paper investigates the learning schemes employed in this adaptive detector and its tran- 
sient behavior. In Section II, the system model is briefly reviewed and the learning scheme 
that appears to be most appropriate is proposed and analyzed. Simulation examples that 
demonstrate the fast convergence of the proposed scheme are presented in Section III. 

II. DETECTOR: MODEL AND ANALYSIS 

The adaptive synchronous CDMA receiver proposed in [l] consists of a bank of filters 
(matched to the users' signature sequences) which comprises the front-end, followed by sam- 
plers and the decision system, as depicted in Fig. 1. 
The received signal r(t) is expressed as: 

K 
r(') = E E h{i)yftTkSk{t ~ iT) + n(t), (1) 

fc=l    i 

where bk(i) £ { —1,+1} is the Ar-th user's data bit in the z-th time interval and n(t) is the 
additive, zero mean, white Gaussian noise with the two-sided power spectral density JVo/2. 
The received energy of the fc-th user signal, unknown to the receiver, is denoted as a^. The 
signature sequence Sk(t), of the same duration T as a data bit, is known to the receiver. The 
sampled outputs of the bank of matched filters in the i-th. bit interval can be expressed as: 

x(i) = VAb(i) + n(i). (2) 

For the sake of convenience the index i will be omitted whenever possible in the text. In 
(2), x = [xi,... ,x/<]T, b = [&x,..., bx]T, A — diagf-y/ö^,..., ^/ÖK] is a diagonal matrix 
and n = [ni,... ,%-]T. The (k, j)th element of the symmetric crosscorrelation matrix "P is 
defined as: 

Pkj =       sk(t)sj(t)dt        k,j <E (1,2, ...,K) 
Jo 

with pkk = 1- The covariance matrix of a zero mean Gaussian noise vector n is 

E{nnr} = VJLV 

The outputs of the decorrelator are given as: 

z = V~lx = Ab + V^n = Ab + Tn = Ab + £, (3) 

where T is the inverse of "P, and £ = Tn. Let b — &!,...,&# be the decision output of 
the decorrelator defined as: 

6 = sgn(z). (4) 

Then the canceler's output is given by: 

y = x - WTb, (5) 
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where 

W = 

0 IV[2 

w2\       0 W2K 

The output for the k-th. user can be expressed as: 

Vk = Xk wk bk, (6) 

where wk is the jfc-th column vector of Wwith the element wkk deleted, and bk is the vector 
obtained from 6 by deleting the element bk. For controlling the weights we use the steepest 
descent algorithm, which simultaneously minimizes the output signal powers E{yk}. That 
is, for the fc-th output, the optimum weights are obtained by an iterative search 

wk(i + l)   =   wk(i) - %-z^-Eiyl) 
2 dwk 

=   wk(i) + fiE{xkbk - bkbk wk(i)} 

=   (I - nE{bkbk})wk(i) +fj,E{xkbk}. (7) 

.«T, 
Note that E{xkbk} = w°kE{bkbk}. Let ck(i + 1) 
be expressed as: 

w°k — wk(i + 1), then equation (7) can 

;T, 
cfc(i + l)   =   (I - tiE{bkbk})ck{i) 

= (i-i,E{bkb
T

k}y+1ck(o) 
= {i-ßRky

+1ck{o) 
H\+1 ck(0), (8) 

where both Rk = E{bkbk } and Hk = J r /jÄfe are (ÜT - 1) x (Ä" - 1) symmetric matrices. 
Since bk E {-1,1}, which implies |£?{6,-6j}| < 1 Vi ^ j, the diagonal elements of ßfc are 
equal to l's and off-diagonal elements range between (-1,1). Likewise, diagonal elements of 
Hk are (1 - //)'s, and off-diagonal elements range between (-^, //). Equation (8) can simply 

be expressed as: 
ck(i) = Hick(0). (9) 

It is easily seen that the training of the weights converges if and only if 

.limCjt(i) = 0, 

which is equivalent to 
lim ff I 0. 

(10) 

:ii^ 

Since Hk is a symmetric matrix, it can be diagonalized and all of its (K - 1) eigenvalues 

are real. So, there always exists an orthogonal matrix Qk such that 

Hk = QkDkQZ\ 
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where Dk is a diagonal matrix Dk = diag [Al5 • • • , \K-I], and A,-, i = 1, • • •, K — 1 are the 
(K — 1) eigenvalues of matrix Hk- Thus, 

cfc(0   =   (Qfc£>iQ^)c*(0) 
/ Ai 0        \ 

Q Qk cfc(0). (12) 

V 0 A'*.! / 

It is clear that the necessary and sufficient condition for the weights to achieve convergence 
and stability is 

| A, |< 1,    Vz. (13) 

By applying the Gershgorin theorem [5, p.146] to matrix Hk, it is easy to see that matrix 
iJfc's (K — 1) real eigenvalues lie in at least one of the (K — 1) disks on the complex plane 
with all their centers reside at (1 — //, 0) and their radii as Tj (j = 1, 2, ■ • •, K — 1), where rj 
is the sum of the absolute value of each element of either the jth column or the jth row of 
matrix Hk with the diagonal element deleted: 

n = £Wkor £{tfk}ji. (14) 

Since the eigenvalues are real values, they can only exist on the real axis and, therefore, all 
the computations are limited in real domain. The above discussion can also be expressed as: 

|A; — (1 — fl)\ < r3    Vz, for some j. (15) 

Since the centers of all the disks coincide at (1 — //, 0), all eigenvalues must lie in the largest 
disk (the disk with the largest radius). Assume tkmax = maxitj\eij\, where e2-j is the (i,j)th 

element of matrix E{bkbk } (or Rk), which depends on the signal SNRs and cross-correlation 
matrix p, then rj < ß(K — 2)ekmax, Vj. Therefore, all the eigenvalues must lie in the disk 
with radius fi(K — 2)ekmax. That is: 

(1 - A*) ~ KK - 2)efcmai < A, < (1 - ß) + ß(K - 2)ekmax. (16) 

Now that the existing range of the eigenvalues of matrix Hk is known, to ensure convergence, 
the eigenvalues must also lie between ( — 1,1). This can be guaranteed if: 

1. (1 - ß) + (i(K - 2)ekmax < 1, which leads to 

{K-2)ekmax<l. 

This balances three elements of the system: the number of users that can access the sys- 
tem simultaneously, the SNRs, and the cross-correlation of their signature sequences. 

2. (1 — /i) — ß(K — 2)ekmax > —1, which leads to 

2 
^< l + (K-2)ekmax- 

This is the condition on the learning rate \i for the system to achieve convergence and 
stability. When condition 1 is satisfied, this condition implies that ft can be any value 
between (0,1). 
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These two conditions are sufficient for the fcth signal to converge. It is easy to verify from 
equation (9) that cfc(oo) = 0 when the above two conditions are satisfied, i.e., the weights 

will converge to the same steady state no matter what their initial values are. 

III. SIMULATION RESULTS AND DISCUSSION 

In this section, two sets of Monte-Carlo simulation examples for the transient behavior of 
the adaptive detector are shown. The first one is a two-user case, while the second one is 
a three-user case. In either case the SNR of user 1 is fixed at 8 dB, and the SNR(s) of the 

interferer(s) are varied. 
The steady state error performance which was analytically evaluated in [4] is shown m 
Fig. 2. The crosscorrelation coefficient is equal to 0.7 and represents a high bandwidth 
efficiency situation. In order to gain some insight into the transient behavior of the system, 
the adaptation of values of the weights as a function of time is observed. Fig. 3 depicts 
the average value ± the standard deviation of w21 that is updated according to the rule in 
(7). Three different SNR2 values of 2, 8 and 14 dB were considered. The learning rate is 
(fi = 0.2), and the expected value E{xkbk} is evaluated as a time average, using a sliding 

window of duration of 2000 steps (signal intervals). 
Fig. 4 shows the transient behavior of the corresponding error probabilities for the above 
scenario. It is observed that the steady state value of the error probability is achieved verv 

quickly. 
In the second set of simulation examples, three users having Gold sequences of length seven 
(frequently used in the literature [3]) are chosen for signature waveforms. The rationale 
for such a choice is that Gold sequences are regularly used in an asynchronous CDMA 
environment and the study of its proposed synchronous counterpart may provide a useful 
indication of the performance of the former. The crosscorrelation matrix V in this case is: 

-A 
The analytically evaluated steady state error performance of user 1 is shown in Fig. 5. Fig. 
7 describes the updating of the weights w21 and to31, for ß = 0.2. Again, as in the two-user 
case, the steady state values are reached fast, without oscillations afterwards. Fig. 7 shows 
the probability of error of user 1, the one that is effected by the weights w21 and w31. The 

steady state value is again reached very quickly. 

IV. CONCLUSION 

It has been demonstrated analytically and by simulation that fast and stable convergence 
is achievable for the adaptive code division multiple access detector described in [4]. The 
desirable transient behavior of the learning scheme has enhanced the practicality of the de- 
tector, indicating that the steady state performance can be attained in a very fast manner. 
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Figure 3:  Convergence of w2\ in the two-user case using the proposed learning scheme (7) 
with fi = 0.2, p12 = 0.7 
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APPENDIX C: PART I 

BLIND DECISION FEEDBACK EQUALIZATION BASED ON 
DECORRELATION 

by 
Raafat Kamel and Yeheskel Bar-Ness 

ABSTRACT 

A new blind equalization algorithm is presented which is based on decorrelating the 
equalizer's output. The algorithm is used with a decision feedback equalizer. The 
performance of the algorithm is studied analytically and through computer simula- 
tion. The algorithm is shown to converge to the correct channel parameters irrespect 
of the initial error rate. Upper and lower bounds on the probability of error were 
derived for the decision feedback equalizer. While the upper bound has been known 
for a long time, the lower bound is presented here for the first time. It is shown 
that the lower is tighter than the commonly used "matched filter" or "no ISI" bound. 
A Kalman-type decorrelation algorithm for blind decision feedback equalization is 
also introduced, which has a higher convergence rate than the original decorrelation 

algorithm. 

I. INTRODUCTION 

In digital communication the need for blind equalization arises in when the channel is 
unknown to the receiver, which attempts to estimate a sequence of transmitted data 
without resorting to the use of a training sequence. The main problem of blind equal- 
ization is that of finding an appropriate cost function (or equivalent error function) 
that reflects the amount of intersymbol intersymbol (ISI) introduced by the channel, 
and which does not involve the transmitted symbols [1-5]. Optimization of the cost 
function should lead to minimization of the ISI. In other words, optimization of such 
a function should be consistent with the minimization of ISI. 

The first known blind equalization algorithm was introduced by Sato [1]. Sato's 
blind equalization algorithm error function was later generalized by Benveniste, et 
al, [3]. Considering Sato's cost function, Godard [2] then described a class of cost 
functions that generalizes Sato's. It is also worth mentioning that the constant mod- 
ulus algorithm (CMA) developed separately by Treichler, et al, [6-7] is also a special 

case of Godard's algorithm. 
Bellini, et al. [4], followed a different approach and developed what they termed 

"Bussgang Techniques." Based on some assumptions about the equalizer and the 
channel parameters, they derived a maximum likelihood estimator of the reference 
signal. This estimator depends on the type of modulation used and the signal-to- 
noise ratio (SNR). The aforementioned algorithms are viewed as special cases of the 
Bussgang technique. 
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The above algorithms used non-convex cost functions which, in turn, imply the 
existence of local minima to which the blind equalizer might converge. Some of 
these equilibria may be undesirable, i.e., at those equilibria the equalizer will not 
be able to remove ISI. This was shown and demonstrated by Ding, et al, for the 
Godard algorithm [8-9] and for the Sato algorithm [10]. In [11], the ill convergence 
of the Benveniste, et al, algorithms [3] was also considered, thus proving that none 

of the previous algorithms were globally convergent. For these algorithms equalizer 
initialization becomes an important issue. One would initialize the equalizer away 
from the neighborhood of the ill-convergent minima. 

Verdu, et al, [12] developed a technique that insures global convergence of blind 
equalizers. The key observation in [12] is that over-parameterizing the blind equalizer 
is the prime cause of ill-convergence, and hence anchoring (setting the first coefficient 
to one) the blind equalizer was proposed [12] [13]. This, together with using a convex 
function, guarantees convergence. Verdu used the minimized energy as a cost func- 
tion. Vembu, et al [13], used the lx norm of the equalizer weight as a cost function, 
which was approximated by the lp norm of the equalizer output. Kennedy and Ding 
[14] applied the concept of anchored equalization to a QAM transmission. Due to 
the complex nature of the signal constellation, they performed joint equalization and 
carrier recovery. This was done by anchoring the sum of the real and imaginary parts 
of the center tap to 1, and using the maximum of either the real or the imaginary 
part of the equalizer output as a cost function. The cost function was implemented 
using the lp norm of the real or imaginary part of the equalizer's output. 

Another family of blind equalization algorithms that appears in the literature 
is based on high-order moments and polyspectra [15] and [16]. In general, these 
algorithms give better performance at the expense of higher arithmetic complexity. 
Basically, they use the received samples to estimate the channel parameters and 
reconstruct the transmitted data via inverse filtering. The computational complexity 
of these algorithms makes them inappropriate for on-line processing. 

A different approach to blind equalization is based on maximum likelihood se- 
quence estimation [17-19]. In [17], the channel is estimated using the least squares 
method. In [18] an iterative procedure was devised which processes a frame of re- 
ceived data. A least square technique followed by a Viterbi algorithm (VA) is iterated 
for jointly estimating the channel and data sequence. A similar iterative procedure 
is used in [19], except the channel is estimated using the EM algorithm. 

The main emphasis of blind equalization has been on the linear equalizer structure. 
We, on the other hand, address another structure which receives less attention: the 
decision feedback equalizer. In this paper we introduce a new blind equalization 
criterion which will be used in conjunction with a decision feedback equalizer. 

In this paper, we assume that the original data is independent and identically 
distributed (iid). This is a valid and widely used model. At the output of the 
channel, the data is no longer independent. The channel introduces the correlation 
in the form of the ISI. We exploit the white noise-like characteristics of the original 
signal and adapt the blind equalizer using decorrelation. This was motivated by [20] 
who provided a simple test to show that an adaptive equalizer has converged to the 
correct settings. In [20] it was shown that if the input data is binary and iid, then the 
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decollation at the output of the sheer of a decision directed equalizer is a necessary 
and sufficient condition for the correct convergence of the equalizer. In this paper 
we show that the decorrelation at the input of a sheer is a necessary and sufficient 
condition for the perfect cancellation of ISI. Hence we use decorrelation as a criterion 

for equalization. 
This paper is organized as follows. In section 2, we introduce the decorrelation 

algorithm for blind equalization. In section 3 we discuss the equalization of autore- 
gressive channels (AR). In section 4 the decorrelation algorithm is used with the 
decision feedback equalizer to equalize a channel of the finite impulse response type. 
In section 5 upper and lower bounds on the probability of error of the decision feed- 
back equalizer in the presence of additive white Gaussian noise (AWGN) are given. 
Due to the simplicity of the decorrelation algorithm one could derive a Kalman-type 
decorrelation blind equalizer, which increases the convergence substantially. This is 

presented in section 6. Conclusions are given in section 7. 

II. THE DECORRELATION ALGORITHM 

Consider an N-tap adaptive equalizer, whose weights are denoted by Wi, 1 < * < N. 
These weights are updated using the steepest decent method, whose update equation 

can be expressed as 
w$+1 = u>i-pf{-)ioTi = l,---,N, (1) 

where ß is the constant of adaptation and /(•) is the error function of the algorithm. 
The roots of the error function determine the steady state of the algorithm. 

In this paper we propose a decorrelation algorithm which uses AkAk-i as an error 
function, where Ak is the output of the equalizer in the linear equalizer case and 
the input to the sheer in the decision feedback equalizer (DFE) case. Therefore the 

weight update equation can be written as 

w^1 = w
k + fiAkAk-i for i = 1, • • •, N. 

In a practical implementation one would replace the expectation by the current 

realization, leading to the stochastic difference equation, 

u,f+i = w
k + pLAkAk-i for i = 1, • • •, N. (2) 

The mean steady state equalizer weight is found by setting the error function in 
equation (1) (in our case AkAk-% for i = 1, • • •, n) to zero. In the following sections we 
consider different channel models and show that the decorrelation algorithm converges 
in the mean to the channel parameters and hence cancels ISI. 

III. EQUALIZATION OF AUTOREGRESSIVE CHAN- 
NELS 
In this section we introduce the decorrelation criterion for equalizing an AR channel. 
Despite the fact that the AR model is not commonly used as a channel model for 
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equalization purpose, it gives a good insight to the decorrelation algorithm. Although 
our main emphasis in this paper is the decision feedback equalizer, we use the linear 
equalizer in this section to motivate the decorrelation algorithm presented in the 
previous section. 

3.1 Problem Formulation 

Consider an AR(ra) channel driven by an equi-probable binary sequence {Ik}. The 
output Xk is given by 

n 

Xk=gIk + J2aiXk-i, (3) 
i=i 

where g is the channel gain and a's are the channel parameters. 
Figure 1 shows the anchored FIR blind equalizer. In the previous section, we 

mentioned the advantages of using an anchored equalizer [12]. The output of the 
anchored equalizer is given by 

Ak   =   Xk - ]P wiXk-i 
1=1 

n 

=     dh + Yl (ai - Wi) Xk-i- 
i=\ 

The above equation can be written as 
(n \ n 

h~Yl wiJk-t   + YJ 
a*Ak-i- (4) 

i=i /     i=i 

In order to show that the equalizer converges in the mean to channel parameters, we 
first derive some correlation results. Multiply equation (4) by Ak_(n+1) and take the 
expectation, to get 

AkAk-(n+1)    =   g f IkAk_{n+1) - Y WiIk^Ak_{n+x)    + ]£ a,-Afc_,-i4jk_(n+i) 
V i=\ J     i=\ 

n 

=     YaiAk-*Ak-{n+l)- (5) 
t'=l 

The last step follows from the fact that /fc_,-Afc_(n+1) are independent for i = 0,1, 2, • • • , n. 
It further follows that 

AkAk-(n+l)     =     Yan-i+^AkAk- 
t'=l 

=   0 

since we require that AkAk^ = 0 for i = 1, 2, • • ■, n at the steady state. This proves 
that AkAk_i = 0 for i = n + 1. Similarly, one can prove that A~kAkZi = 0 for i > n. 
Therefore, at steady state we have 

AkAk_i = o-^(z'), (6) 

where S(-) is the Kronecker delta, and we assumed that Ak is a wide sense stationary 
random process. In other words, the sequence {Ak} becomes white noise-like. 
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3.2 Steady State Analysis 
In the Z-domain, one may write equation (4) as 

]~aiZ~\ anZ~lA(z) = ^(*)> 1 - w1z~l — ■ ■ • - wnz 
n 

where A(z) and I(z) are the Z-transforms of Ak and Ik, respectively.   In the time 

domain, using long division, the above equation may be written as 
CO 

J2^Ak-i = gh, (7) 
2=0 

where 
7o    =    1 
7i    =    ^l _ ai 

72 =    (w2 - a2) - u>i7i 
73 =    (^3 - «3) - ^27i - ^172 

In     =     {Wn - Otn) - Wn_i7i - ^l7n-l 

Now multiply equation (7) by Ak-i and take expectation 
CO 

YsliAk-iAk-r = 0. 
t'=0 

The above result follows since Afc_x is independent of Ik. Hence together with equation 

(6), we have 
^7i = 0; 

therefore, we get 71 = 0, i.e., w\ = a\.  Similarly, one can show that 72 = 0, which 

together with 71 = 0, gives io2 = a2. Hence 

W{ = CL{ for i = 1,2, • • •, n. 

Therefore, at steady state, the decorrelation algorithm results in perfect ISI cancel- 

lation. 

IV. EQUALIZATION OF MOVING AVERAGE 
CHANNELS 
In this section we discuss the blind decision feedback equalization of channels with 
a finite impulse response. We will assume that the channel will not introduce any 
precursors, and as a result the DFE will include a feedback filter and a decision 
device. A typical DFE will include a forward filter to cancel the precursor ISI. This 
filter is typically a linear equalizer followed by a linear prediction error filter. Since 
many articles deal with blind linear equalization we chose not to address it. In a real 
scenario one could use the decorrelation algorithm to adapt the feedback filter and 

any of the existing blind algorithms for the forward filter. 
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4.1 Problem Formulation 

The channel and equalizer model under consideration is shown in Figure 2. The 
cascade of transmit, channel and receive filters is modeled as an FIR filter with 
impulse response 

N 

h(n) = 1 +^2hiS(n - i), 
;=i 

where S(-) is the Kronecker delta. In the above equation we normalized relative to 
the first cursor (h0). We also assume that the input h is a binary white sequence 
with a zero mean. The output of the channel is thus given by 

N 

Xk = h + 2.^ hih-i- 
4 = 1 

We assume that the channel is slowly time varying and the receiver has perfect carrier 
and timing recovery. The channel post-cursors {hi, ■ ■ ■, h^} introduce ISI on the 
current data symbol Ik- The estimated data Ak is produced by passing Ak through a 
slicer. 

Referring to Figure 2, the input to the slicer of the decision feedback equalizer Ak 
is given by 

Ak   =   Xfc-A'^W 

=   7, + lUH-AUW, (8) 

where A^_i is the vector of the past N decisions A'k_1 = [Afc_i, Afc_2, • ■ •, A^-jv] 
(the prime stands for transpose) and I^-i is the vector of past transmitted infor- 

mation bits I'fc_x = [Ik-i,h-2,--- ih-N], where Ik-i G {-1,1} and P{h-i = 1} = 
P{Ik-% = —1} = f- W and H are the equalizer and channel parameter vectors, 
respectively;W = [w\, w2, ■ • ■ , wjv] and H' = [hi, h2, • ■ ■, /iyv]- 

In this paper we will assume a noiseless situation, i.e., we consider an arbitrary 
high signal-to-noise ratio. AWGN will be considered in the next section For ideal 
ISI cancellation, the slicer's input Ak = h and therefore sequence {Ak} will be 
decorrelated, i.e., AkAk~n = 0 for n ^ 0. In other words, decorrelation is a necessary 
condition for ideal cancellation of ISI. In order to be able to use the decorrelation of 
the slicer's input as a criterion for controlling the feedback weight vector W, we must 
prove that decorrelation is also sufficient for cancelling ISI. This is what we intend to 
show in the next section. 

4.2 Sufficiency 

In order to prove sufficiency, we rewrite equation (8) as 

N N 

Ak = h + Yl hth-i - Yl wiAk-i- (9) 
4 = 1 4 = 1 
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If we denote the set of all correct decisions by Ai and the set of all incorrect decisions 

by A2, i.e., 

Ai   =   {Äi : A; = Ii} 

A2   =   {Äi : Äi = -Ii}, 

then equation (9) can be written as 

Ak   =   Ik+     J2    (hi-Wi)Ik-i+     Yl    (hi + wjh-i 
i:Äk-i€A1 i:Äk-ieA2 

N 

=     Ik + Yl lih-i 

=   h + isik, 

(10) 

where 7; is given by 

7; 
(hi - Wi)   for all i : A^-; E Ai 

(hi + iüi)   for all i : Äk-i E A2, 

and 
JV 

isik = X^^i-ffc-i- 
t'=l 

We can now show that decorrelation is a sufficient condition for cancelling ISI. Mul- 
tiply equation (10) by Ak-i = [Ak-i, Afc_2, ■ • •, Ak-N], the vector of the past slicer's 

input, to obtain 

N 

AfcAfc_i   =   7fcAfc_i + YJnh-iAk-i- 
i=l 

By taking the expectation on both sides of the above equation, it can be shown that 

the above equation reduces to 

/ AkAk-i      \ 
AfcAfc_2 

AkAk-n 

AkA ksi-k-N+l 

/ 7i + E^i1 7i7i+i   \ 
1   v^TV—2 

72 + Ei=i  7i7i+2 

N-n 
7n   1   Ej"=l    7i7i+n 

7JV_I + 7I7TV 

V IN 

(11) 

/ V AkAk-N     j 

It is clear from the last entry of the vectors in the above equation that jN = 0 

iff AkAk„N = 0. Similarly, it follows from the (N - l)th entry that if -jN = 0, then 
7;v_i = 0 iff AkAk-N+\ = 0. One would thus start from the bottom entry and use 
back substitution to show that 7; = 0 for i = 1, • • •, TV iff AkAk^ = 0 for i = !,•••, N. 
It thus follows from equation (10) that isik = 0 in the steady state iff AkAk-i = 0 
for i - 1,- ■ • ,N. This completes the proof that decorrelation is also sufficient for 

cancelling ISI. 
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4.3 Simulation Results 
A non-minimum phase channel, whose transfer function is given by 

H{z-X) = 1 + 0.8z-1 + 0.4z~2 - 0.6z~3 + 0.2z~4, 

was used in a simulation to demonstrate the convergence of the decorrelation al- 
gorithm. Figure 3 shows the learning curve obtained by ensemble-averaging over 
200 independent simulation runs. The blind DFE used had four tap gains in the 
feedback filter. The adaptation constant \i used in the simulation was set to 0.01, 
and the weights were initialized to zero. As depicted in Figure 3, the four weights 
W{,i = 1,2,3,4 converge to the correct channel parameters. 

The decorrelation algorithm was also used to equalize a non-minimum phase chan- 

nel whose transfer function is given by 

H(z-1) = 1 + 0.5z-1 -1.44z -2 

In order the demonstrate the ability of the decorrelation algorithm to converge to 
the correct weight irrespective of the initial condition, we initialized the equalizer 
weights with different values. Figure 4 portrays the trajectories for different equalizer 
initializations. It clearly shows that the decorrelation algorithm always converges to 

the correct weights. 

V. ERROR ANALYSIS 

In considering the probability of bit error for the AWGN case with a zero mean and 
a variance of <72, we follow the Duttweiler, et al, approach [21]. Only results will be 
given in this section, readers interested in details are referred to [21] [22]. An upper 
bound to the probability of error was derived in [21]. Duttweiler, et al, modeled 
the errors in the feedback filter of a DFE as a finite state machine. Using the state 
transition probabilities (a,-, i = 1, • • • , N where in our case N is the number of 
delay elements in the feedback filter), Duttweiler obtained an upper bound to the 
probability of error. Using the same finite state machine, a lower bound was derived 
in [22] which was tighter than the commonly used "no ISI" bound. 

It was shown in [21] that the probability of error q is given by 

q    =    Rjj , 

where 

7V-2    i JV-1 

RN   =    l+£  JJ öm + (1 - c^)-1 Y[am. (12) 
i=0  m=0 m=0 

In order to calculate the probability of error, one has to know all the state transition 
probabilities, a,-. This is not feasible for large N. Instead, one can use lower bounds 
on the transition probability to derive an upper bound on the probability of error. 
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In [22] we derived expressions for the lower and upper bounds on the transition 
probabilities, then obtained respectively an upper and lower bound on the probability 
of error of the blind decision feedback equalizer. 

The bounds on the transition probabilities are given below (details of the deriva- 

tion are omitted). 

>    1 f    (-1 - 2hm+1 + ßm+A   |      /-l + 2frm+i+/W 

for 0 < m < N - 2 

.      1   ( ~ ( — 1 — 2/im+l — ßm+l\    .    ~ ( — 1 + 2/lm+l  — ßm+l 
am   <   - [Q[ ;    +Q[ -  

ÖJV-1 

aN 

for 0 < m < JV - 2 

Q 
l 

where 

TV 

ßm=2    Y,     \H 

Using these results in equation (12), we can obtain the lower and upper bounds on 
the probability of error in the steady state. 

As an example, consider the channel whose transfer function is given by 

H(z~1) = 1 + 0.8z-1 + 0.6^-2 + 0.4z"3. 

In this case, the feedback section contains three delay elements, N = 3. The transition 
probabilities are given by 

«. > j « 

aa   <   -\Q 

<*. > \{Q 

«.  <  5  9 

«2 

«2 

Q 

(-1 -2/ii + ßi 
a 

(-1 -2hi -ßi 
a 

/-l -2h2 + ß2 
a 

(-1 -2h2 -A 
a 

(-1 -2h3 

)♦■ a 

+ Q(-l + 2h1 + ßl 

Q 

+ Q 

+ Q 

\    * 
/'-1 + 2Ä1 -ßi 

\           ° 
(-l + 2h2 + ß2 

{          « 
f-l + 2h2 -Ä 

a 

-l + 2fe3 

a 

Q a 
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where ßi = 2(|ft2| + l^l) and ß2 = 2|/i3|. Figure 5, below, shows the lower and 
the upper bound of the probability of error. Also shown is the probability of error 
computed from simulation. The "no ISP lower bound is also shown, and one can see 
that the lower bound derived here is tighter than the "no ISP bound. 

VI. KALMAN-TYPE DECORRELATION ALGO- 
RITHM FOR THE BLIND DFE 

A drawback of blind equalizer is the speed of convergence. It can take several hundred 
to several thousand symbols for the blind equalizer to converge. The speed of conver- 
gence of the conventional LMS equalizer was improved by using a weighted sum of 
the past squared errors [23]. The resulting algorithm, known as the Recursive Least 

Squares (RLS) or Kaiman algorithm, improves the speed of convergence substantially. 
The penalty is an increase in computational complexity. 

The decorrelation algorithm described in this paper uses a simple error function, 
which makes it easy to extend to a Kalman-type algorithm. In this section we show 
how one can improve the convergence of the algorithm by considering a weighted sum 
of past correlations. In other words, instead of decorrelating instantaneous realiza- 
tions of the output, we decorrelate the time-average weighted samples of the output, 
i.e., we force 

E^-Mj-A; 
3=0 

to zero, where A'j = [A,-_x, Aj_2, • • •, A,-_n].  Substituting for Ak from equation (8) 
and setting the weighted correlation time average to zero, we get 

k 

I 
3=0 
E A*"''A,- (Xj - Ä;.Wfc) = 0, 

where we have introduced the time index k in the weight vector, since a weight update 
equation will be derived from the above expression. The above equation leads to 

Wjt = R-^D*, (13) 

where 

m ± EA^AJ-A; 
i=0 

and 

D*   i\   E^-'X-A,-. 
3=0 
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6.1 The Recursive Matrix Inversion 

Equation (13) involves the inversion of an n x n matrix, Rfc, and the Kaiman formu- 
lation involves a recursion formula for the evaluation of the inverse matrix. A similar 

one can be used here. 
It is important to note that matrix Rfe can be obtained recursively as 

RJfe = ARfe_1+AifeÄjfe. (14) 

It is known that for any A nonsingular matrix, and u and v the following is true: 

„-1 i      A_1uv'A_1 ,ir^ 
(A + uv'   * = A"1 - ■ (15) v ' 1 + v'A Lu 

Therefore, using equation (15) in equation (14), we get a recursive formula for R-1^: 

R-K = i (R-Vl _ R-^R-'"). (16) 

Next define 

and further define the Kaiman vector gain as 

kfc = T-i—Pt-iAfc, (18) 
A + Mfe 

where the scalar fik is given by 

Hk = A'fcR~ /t-iAfc. 

Using the above definitions, one can write equation (16) as 

Pfc =  J (Pfc_! - kfcÄ'fcP*-!) ■ (19) 

The vector T)k can also be obtained recursively as 

Dk = \T>k^+XkAk. (20) 

Using equations (13) and (17), we can write 

Wfc = PkBk. 

Therefore, using the recursive formulae for Pjt and Dfc from equations (19) and (20) 

respectively, we get 

Wfc   =   j(Pk-i-'kkÄ.'kPk-1)(XDk.1+XkAk) 

=   Pfc_iDfc_i +-XfcPfc_iAfc 
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1 
-kfcA'fcPfc-xDfc-i - -XkkkA'^k^Ak 

Wk-i + jXk(X + nk)kk 

-kfcA'^Wfc-i - jXkfikkk 

=   Wk-1+kk[Xk-A'kWk-lj 

=   W*-! + zfckfe, (21) 

where zk is given by 
zk=(Xk-A'kWk_1[ 

The order that constitutes the Kaiman type decorrelation algorithm is summarized 
below: 

Wfc = Wfc_x + zkkk, 

where 
zk = (Xk - A!kWk^) . 

The vector Kk is evaluated by the recursions: 

kk =            Pfc-iAfc 
A + M-t 

k = i (P,_! - k,A',P,_ 

Hk = A'^Pfc-iAfc. 

.,), 

where 

6.2 Simulation Results 

A channel whose transfer function given by 

H(z~l) = 1 + 0.5z'1 - l.Uz~2 

was used to demonstrate the improvement in the convergence rate when using the 
Kaiman approach. Figure 6 depicts the learning curve of the decorrelation DFE 
and the Kalman-type decorrelation DFE, obtained by ensemble-averaging over 100 
independent simulation runs. Figure 7 depicts the averaged squared error of the 
decorrelating DFE and the Kalman-type decorrelating DFE. The increased speed of 
the latter is clearly shown. 

VII. CONCLUSIONS 

In this paper we introduced a new criterion and algorithm for blind equalization. 
This algorithm is used in conjunction with a decision feedback equalizer. It decorre- 
lates the data sequence at the input of the sheer.  It was shown to converge to the 
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optimum weights irrespective of the initial error rate. Examples for minimum and 
non-minimum phase channels supplement the proven analytical results. 

With an adaptation constant p of 0.01 the algorithm converges after 300 itera- 
tions. The simulation also shows that the algorithm converges to the optimum point 

regardless of the initial setting. 
We also used the error model proposed by Duttweiler, et a/., to obtain upper and 

lower bounds on the steady state probability of error for a decision feedback equalizer. 
The upper bound is essentially the same as that obtained by Duttweiler. The lower 
bound is tighter than the commonly used "no ISP lower bound. 

We have also derived a Kalman-type decorrelation algorithm for the blind DFE. 
This has a higher rate of convergence than the original decorrelation algorithm, with 

the added cost of an increase in the number of computations. 
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Figure 1: Blind Linear Equalizer 
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Figure 4: Convergence of the BDFE 
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APPENDIX C: PART II 

ANCHORED BLIND EQUALIZATION USING THE CONSTANT 
MODULUS ALGORITHM 

by 
Raafat Kamel and Yeheskel Bar-Ness 

ABSTRACT 

Blind equalization is a technique of adapting an equalizer without the need of a training 

sequence. The constant modulus algorithm (CMA) is one of the first known blind equaliza- 

tion algorithms. The cost function of the CMA exhibits local minima, which are the primary 

cause of the ill-convergence of the CMA. Anchoring the CMA improves the performance of 

the CMA in terms of ill- convergence. This technique is used with the linear and the decision 

feedback equalizers. It is shown that the adaptive equalizer will always remove intersymbol 

interference (ISI) as long as the channel gain exceeds a certain critical value. 

I. INTRODUCTION 

Adaptive blind channel equalizers eliminate the use of training signals in digital communi- 

cation when their transmission is impractical. The problem of adaptive blind equalization 

is that of finding an appropriate cost function (or equivalent error function) that reflects 

the amount of intersymbol intersymbol (ISI) introduced by the channel, and which does 

not involve the transmitted symbols [1-5]. Optimization of the cost function should lead to 

minimization of the ISI. Blind equalization algorithms differ in the choice of the cost function. 

The first known blind equalization algorithm was introduced by Sato [1]. Sato's blind 

equalization algorithm error function was later generalized by Benveniste, et ah, [2]. Consid- 

ering Sato's cost function, Godard [3] then described a class of cost functions that generalizes 

Sato's. A similar scheme, known as the constant modulus algorithm (CMA) was developed 
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separately by Treichler, et al, [6-7] based on property restoral concept. 

Bellini, et al. [4], followed a different approach and developed what they termed "Buss- 

gang Techniques." Based on some assumptions about the equalizer and the channel param- 

eters, they derived a maximum likelihood estimator of the reference signal. This estimator 

depends on the type of modulation used and the signal-to-noise ratio (SNR). The aforemen- 

tioned algorithms are viewed as special cases of the Bussgang technique. 

The above algorithms used non-convex cost functions which possess local minima to 

which the blind equalizer might converge. Some of these equilibria may be undesirable, i.e., 

at those equilibria the equalizer will not be able to remove ISI. This was demonstrated by 

Ding, et al, for the Godard algorithm [9] and for the Sato algorithm [8]. In [10], the ill 

convergence of the Benveniste, et al., algorithms [2] was also considered, thus proving that 

none of the previous algorithms were globally convergent. For these algorithms equalizer 

initialization becomes an important issue. One would initialize the equalizer away from the 

neighborhood of the ill-convergent minima. 

Verdu, et ah, [11] developed a technique that insures global convergence of blind equaliz- 

ers. The key observation in [11] is that over-parameterizing the blind equalizer is the prime 

cause of ill-convergence, and hence anchoring (setting the first coefficient to one) the blind 

equalizer was proposed [11-12]. This, together with using a convex function, guarantees con- 

vergence. Verdu used the minimized energy as a cost function. Vembu, et al. [12], used the 

/i norm of the equalizer weight as a cost function, which was approximated by the lp norm of 

the equalizer output. Kennedy and Ding [13] applied the concept of anchored equalization 

to a QAM transmission. The cost function used was the lp norm of the real or imaginary 

part of the equalizer's output. 
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Another family of blind equalization algorithms that appears in the literature is based on 

high-order moments and polyspectra [14] and [15]. In general, these algorithms give better 

performance at the expense of higher arithmetic complexity. Basically, they use the received 

samples to estimate the channel parameters and reconstruct the transmitted data via inverse 

filtering. The computational complexity of these algorithms makes them inappropriate for 

on-line processing. 

Maximum likelihood blind sequence estimation has also been proposed [16-19]. These 

approaches involves the use of a blind channel identification scheme is conjunction with the 

Viterbi Algorithm. 

A new approach to blind channel identification was reported in [20-21], that exploits the 

cyclostationery nature of digital signals. Interested readers are refered to [20-21]. 

In this paper we will consider using the CMA with an anchored equalizer. This approach 

will improve the performance of the convergence property of the original CMA. It is shown 

that the anchored blind equalizer with the CMA (ACMA) converges to the channel param- 

eters rendering zero ISI provided the channel gain exceeds a certain critical value. If the 

gain drops below this critical point, the algorithm will converge to a local minimum. This 

problem can be alleviated by introducing a gain in the equalizer. The speed of convergence 

of this equalizer will be compared to that of AMEA [11]. 

This paper is organized as follows. First we consider using the ACMA for blind equal- 

ization of autoregressive and moving average type channels in sections 2 and 3, respectively. 

In section 4, we present simulation results. Conclusions are given in section 5. 
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II. EQUALIZATION OF AUTOREGRESSIVE CHANNELS 

Consider an AR channel of order n (AR(n)), the received signal is given by 

n 

i=l 

where g is an arbitrary gain, and a;'s are the AR(n) channel parameters. The information 

symbols (a^'s) are binary, independent and identically distributed with zero mean and unit 

variance. The moving average (MA) anchored equalizer output has its first tap set to 1, and, 

therefore, its output is given by 

n 

Vk    =   rk + ]T Wirk-i 

=    Sak + J2 {&i + Wi) rk_i 
i=l 

=   gak + isik (l) 

where w^s are the equalizer's coefficients and isik is given by 

n 

isik = ^2 (a* + wi) rk-i- (2) 
i=i 

The CMA exploits the fact that the original constellation has a constant envelope, that is, 

i?{|a^|} = 1 for all k. Therefore an appropriate cost function would be 

J(yk) = {\yk\2 - i)\ 

which is minimized when the equalizer output has a constant modulus (E{\yk\} = 1). Using 

stochastic gradient descent to minimize the above cost function, the update equation for the 

CMA is given by 

™ki+1 = w* ~ V>n-i (yt -l)yk     for i = 1, • • •,n. (4) 

Figure 1 shows the anchored linear equalizer and the CMA control. 
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Multiply the above equation by a; + wk: 

wk+1 (a,- + wf) = wk (a, + wk) - fi [on + wf) rk_iVk (y
2 - l) . 

Now take the expectation of the above conditioned on wf. 

aiE{wk+1\wk} + wkE{wk+1\wk} = a%w
k + (wkf - fi (a{ + wk) E{rk^yk {y\ - l) \wk}. 

Steady state is reached when E{wk+1\wk} = wf, and, therefore, we have 

(ai + wf)E{rk-iyk(y2
k-l)\w!} = 0    for    i = 1, • • • ,n and all k. (5) 

The above n equations determine the points of equilibrium of the algorithm. One would have 

to solve the above equations in order to determine whether the algorithm would converge to 

the desired values (to,- = a;) and, hence, cancel the ISI completely. Instead we show directly 

that, under certain conditions for the gain g, equation (5) implies complete cancellation of 

ISI. 

Adding the above n equations we get 

£ 0* + wf) E{rk_lVk (yl - l) \wk} = 0. 
t=i 

Substituting equations (1) and (2) in the above equation results in 

E{isik {[gak + isikf - l) (gak + isik) \wk] 

= E{isik (g
z4 + (3g2a2

k - l) isik + (3isi2k - l) gak + isif) \wk}} 

= 0. 

Now, with the definition (2), isik depends on the previous data and wk (which itself depends 

only on the previous data ak-i,i > 1), therefore isik is independent of the current data ak. 

Using this together with the fact that both have a zero mean, we get 

E \{y\ - l) yk J2 (ai + wi) rk-i\wk >   =   E [isisk{y2
k - l)yk\wk] 

i=\ 

143 



=    (3g2a2
a - l) £{"«>?} + £{:«>?} 

=   ■(3Ä
2-l)E{t^|«;?} + E{witl«'?} (6) 

=   0. 

If 3g2 — 1 in equation (6) is a positive quantity then it can be written as 

E{isii\v^} = -K2E{zszl\w*} (7) 

with K positive. However, both E{isil\wf} and E{isi2
k\w^} being positive quantities implies 

E{isii\w!} = E{isil\w!} = 0, 

and together with the fact that the expected value of isik is 0, we conclude that isik = 0 

with a probability of 1. In sum, if the algorithm reaches a steady state then equation (5) is 

satisfied for i = 1, • • ■ , n, and from equation (1) 

rk = ga-k for all k. 

If, however, 3g2 — 1 is negative then equation (6) can be written as 

E{i«tk-} = A2£{»«2k-}, (s) 

where A2 = 1 — 3g2, in which case the ISI power is not necessarily zero. This corresponds 

to a case wherein the algorithm converges to a local minimum, which could be undesirable. 

We show the existence of such undesirable equilibria by using a simple example. 

2.1 Undesirable Equilibria 

Consider an ARin) channel with one feedback tap, given by 

rk = gak + ark-n- 
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The equalizer output is then given by 

Vk = gak + (w + a)rk-n, (9) 

and the ISI term by, 

It is then easy to show that 

isik = (w + a)rk-n- (10) 

E{rj} _   2l + 5a2 

E{rt)      9   1-a*' 

and by substituting equation (10), 

E{isi\\w}        2,     ,    s2l + 5«2 (U\ 

Combining equation (11) with equation (8), we get 

1-a4 

[w + af   =   A' 
g2(l + 5a2 

= (1-^)?^?)' (12) 

or 

to = —a ± 
1 -a4 

 NTT-Tar (13) 

This clearly shows that the weight w will not converge to the correct channel parameter a. 

In particular, following a procedure similar to that of [9], we predict the condition on g 

and a which results in w = 0, and in no ISI cancellation (see equation (9)). Setting w = 0, 

in equation (13), we get 

2 =       1~Q4 

9       3 + c*2 + 2a4' 

Therefore if the gain satisfies the above equation, the equalizer will not remove ISI. In 

conclusion, if the condition 3g2 - 1 > 0 is guaranteed, one would ensure that the algorithm 

would always converge to the correct channel parameters. In other words should the channel, 

gain g be less than -4, the algorithm will not converge to the no ISI case. 
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The actual dependence of steady state and ill convergence of the ACMA on the channel 

gain g is examined in the following example. For the AR{\) 

rk = gak + 0.6rk_1. (14) 

The ACMA equalizer is given by 

yk = rk + wWrk_1. (15) 

Using these two equations, we plot in Figure 2 the cost function J(yk) = E{(y2
k - if) as a 

function of w and g. From this figure it is clear that if the gain g > 4= = 0.577 then the 

cost function has a unique minimum at w = a = 0.6. If, however, the gain g drops below 

^=, the function will have two minima and a maximum at w = a and therefore the equalizer 

will not converge to the channel parameter. 

One can alleviate this problem by introducing an arbitrary gain, G, in the equalizer. The 

output of the equalizer is then given by 

Uk    =   Grk + G J2 Wirk-i 
i=l 

n 

=   Ggak + GY,(ai + Wi)- (16) 
i=i 

Following a similar procedure as the one above, one can show that at the algorithm's steady 

state, ISI is cancelled (with a probability of 1) if and only if 

5>^r <17> 
Thus, one can choose G appropriately such that condition (17) is satisfied. In other words, 

one would choose G such that for the worst case g condition (17) is met. If the worst case 

g is 0.01, for example, one would choose G > ^. 
V3 
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III. EQUALIZATION OF MOVING AVERAGE TYPE CHANNELS 

Consider a real MA type of channel of order n, MA(n), the received signal, is given by 

n 

where g is an arbitrary gain of the first cursor and ä,-'S are the MA(n) channel parameters. 

The input to the sheer of the decision feedback equalizer is given by 

Vk =   rk~Y^ wiVk- 
t=i 

n n 

=   gak + Y ^iak-i ~ Y wiVk-i, (18) 
4 = 1 i' = l 

where io;'s are the equalizer's coefficients. Figure 3 shows the decision feedback equalization, 

with the control section. 

Now, if we denote the set of all correct decisions by Yx and the set of all incorrect decisions 

by Y", i.e., 

Y' = {yi : yi = ai] 

Y" = {yi : fr = -a,-}, 

then equation (18) can be written as 

Vk   =   gak+    Y    (hi-wk)yk-i-     Y    (hi + w$)yk-i 
i-Vk-itY' i-Vk-itY" 

n 

= g^k + Y liiik-i 
t=i 

=   gdk + isik, (19) 

where 
n 

isik = YliVk-i, 
t=i 

and the 7;'s are given by 

7,    =    (hi - w;) for i : jjk-ieYx 

li   =    ~(hi + w\) for i : yk-itY2. 
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Applying the constant modulus cost function in equation (3) for the DFE, and using 

equation (18) for dyk/dwi, we get the following update equation 

iof+1 = iof + nyk-i (yl ~ l) Vk for i = 1,2, • • •, n. (20) 

Multiplying equation (20) by 7,-, 

w*+17i = u;*7,- + /^7iyjt-« (j/| - l) 2/fc- (21) 

As before, take expectation conditioned on w* to obtain 

£l{u;?+17.>?} = «>?£{7.K} + ^{7,-y*-.- (i/2 - i) y*h?}. (22) 

It is simple to show that steady state is reached (that is E{w^+1\wf} = wf) if and only if 

E{"iiyk-i [yl - l) Vk) = 0 for all i for which yk-icYi or yk-ieY2. 

Summing on i we have 

E V^UVk-i {yl - l) J/fck* I    =   E{isik (yl - l) y^wf} 

=   0. 

This is exactly the same equation we have for the AR(n) channel case.   In Figure 4.3 we 

present a digital implementation of the DFE-ACMA for an MA type channel. 

IV. SIMULATION 

In this section we present simulation results of the anchored constant modulus algorithm 

as it is applied to the linear equalization for autoregressive channels and to the decision 

feedback equalization of moving average type channels. In particular, we show the effect of 

the gain g on the performance. 
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4.1 Linear Equalization 

Consider the AR(1) channel whose output signal rk is given by 

rk — ga-k + 0.6rfc_i 

The linear equalizer taps weights are updates using 

w(k+iy=w^-firk^yk(yl-l). 

The averaged squared error of this equalizer is given in Figure 4 

4.2 Decision Feedback Equalization 

To examine the performance of the DFE we consider a channel whose transfer function 

is given by 

H{z-1)=g + 0.5z-1-lA4:Z-2 (23) 

with the corresponding adaptation rule of equation (20).   The averaged squared error is 

depicted in Figure 5. 

In these figures, the estimate of the residual ISI power is obtained by passing the sequence 

of the squared error((afc - sgn {yk))2) through a smoothing filter whose transfer function 

is given by 0.05/(1 -0.95z_1). These figures show clearly that the speed of convergence 

of the ACM A, for the linear and decision feedback equalizers, depends on the channel gain 

g. As the gain g the approaches breakpoint, g = -4, the algorithm takes a longer time 

to converge. We notice that for 1 < g < 0.7, the speed of convergence is nearly constant, 

reaching approximately zero after 130 iterations, while for g = 0.6 the algorithm converges 

after 250 iterations.   The ill convergence of the algorithm is also evident for the gain of 

^ = °-5<7f- 
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The performance of the ACMA is also compared with the anchored minimum energy 

algorithm described in [11]. In Figure 6, we depict the convergence of this algorithm when 

used with the AR(l) channel used in equation (9). The adaptation rule for the AMEA is 

given by 

w- 

As in ACMA, the speed of convergence depends on the channel gain g.   However, being 

globally convergent, the AMEA shows no ill convergence for a small g. 

Finally, in Figure 7 we compare the rate of convergence of the ACMA with that of the 

AMEA for g = 1.0. The ACMA converges faster than the AMEA. 

V. CONCLUSION 

In this paper we used the concept of anchoring the blind equalizer with the constant 

modulus algorithm for AR and MA channels. We showed analytically and through simula- 

tion that the algorithm converges successfully if the unknown channel gain exceeds a certain 

value (-7?)- The algorithm will fail to converge to the desired value if the channel gain drops 

below this value. This problem can be minimized if we introduce a gain in front of the 

equalizer. Introducing a gain at the equalizer will not eliminate the problem, but it will 

lower the critical point below which ill convergence appears. 
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Figure 1: Anchored Linear Equalizer with the CM A 
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Figure 3: The Anchored DFE using the CMA 
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APPENDIX C: PART III 

BLIND MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION OF DIGITAL 
SEQUENCES IN THE PRESENCE OF INTERSYMBOL INTERFERENCE 

by 

Raafat Kamel and Yeheskel Bar-Ness 

ABSTRACT 

A blind maximum likelihood (ML) sequence estimator for an unknown linear dispersive 
channels is described. The estimator assumes a channel model with quantized parameters. 
Two trellises, a channel trellis and a data trellis are defined, to search for the ML channel 
and data estimates using the Viterbi Algorithm (VA). This approach provides a good per- 
formance versus complexity tradeoff. 

I. INTRODUCTION: 

Adaptive blind equalizers are used to combat intersymbol interference in situations when 
it is not appropriate to use training sequence in the adaptation of conventional equalizers [2]. 
Most of the research in blind equalization is geared towards finding suitable cost function 
for the linear equalizer. For severely distorted channels, linear equalizers enhances noise, 
resulting in unsatisfactory performance. For these channels blind decision feedback equal- 
ization and blind maximum likelihood sequence estimation (MLSE) are prefered. In this 
communication we consider the latter technique. It is well known that MLSE outperforms 
both the decision feedback and linear equalizers. Usually the Viterbi algorithm (VA) is used 
to compute the MLSE efficiently [1], but not without large computation complexity. 

For the problem in hand joint ML estimation of the unknown channel and the transmitted 
data sequence is needed. Seshadri in [3] calculated the least square estimate of channel for 
every possible sequence. The data sequence that achieves the lowest least square error is then 
chosen. The resulting complexity in this approach was considerably higher than that of the 
conventional VA. Ghosh and Weber in [4] developed an iterative algorithm that estimates 
the channel parameters. An initial guess of the unknown channel is made and the VA is used 
to estimate the ML of a fixed frame of data. This frame is then used to compute the least 
square fit of the channel. The process is iterated till the channel estimate converges, the the 
algorithm is switched to the conventional mode of operation. The frame length needed was 
long, which incerases the complexity. 

To facilitate the proposed approach of this letter, we assume a quantized channel1 and 
develop two trellises one for the channel and the other for the data. The VA is used to search 
the two trellis for the ML channel and data sequence estimate. The output of one is fed into 
the metric calculator of the other. The resulting scheme offers a considerable reduction in the 

xThis is justified in practice, since finite precision processors are used to implement the algorithm. 
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computation complexity compared to [3,4].   It also prevails good complexity/performance 

tradeoff. 

II. CHANNEL MODEL AND THE PROPOSED TECHNIQUE 

The sampled output of the channel, rk, at instant k is given by 

rk = l'kh + nfe, (1) 

where Ik = [Ik, h-i,- ■ ■, h-i]' and h = [h0, h, ■ ■ ■ , hL]'. 
{hi}f=0 is the sampled impulse response of the cascoded transmit, channel and receive 

filters, assumed slowly time varying, {h-i} is the sequence of transmitted symbols, which 
are assumed identically distributed independent random variables and {nk} is an additive 
white noise sequence with Gaussian distribution. At each instant the data takes one of the 
M possible levels {±1, ±3, • • •, ±(M - 1)} with equal probability. 

We first consider the problem of estimating a sequence of JV transmitted data symbols 
from a sequence of channel outputs r^ = [rx,r2, ■ ■ ■ rN}' for a known channel. There are MN 

equi-probable sequences denoted by {1(1), ■ • • ,1^)}. The ML estimator chooses the most 
likely sequence 1ML according to 

IML = argmax/r|i(r|I), (2) 

where /r|i(-|-) is the conditional probability density function (pdf). Since {nk} are iid random 
variables, one can write 

N 

/r|l(r|I)    =    Tl frk\l(rk\lk), 
fc=i 

N 

= n/nfa-w. (3) 
fe=l 

where fn(-) is the Gaussian pdf. In principle the maximization in eq. (2) should take place 
through exhaustive search over the MN sequences, which can be carried out efficiently using 

the VA [1]. 
For the unknown blind equalization problem at hand, we consider the conditional prob- 

ability of the received sequence r^ conditioned on both the transmitted sequence and the 
channel impulse response. Assuming all channel realizations are equally probable, the joint 
ML estimate for the transmitted data sequence and the channel parameters is given by, 

(IMIOIIML) = axgmax/r|i,h(r|I,h), (4) 

wherein the maximization is carried over all the possible channel realizations and transmitted 
data sequences. Such problem is not trivial since h is continuous and I is discrete. 

While [3,4] solved eq. (4) by finding the least square estimate of the channel and then 
using that estimate in the VA, we follow a different approach. The key observation is that 
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if the channel is discrete, one could interchange the roles of data and channel parameters in 
the VA branch metric. That is if the data is known one would search a channel trellis for 
the ML channel parameters and vise versa. Therefore we propose to use two trellises, one 
for data and the other for channel. Two VAs are used to search two trellises in parallel one 
for the data and the other for the channel. The output of one would feed the other and the 
vice versa. This joint maximization would eventually converge to the estimate given in eq. 

The channel parameters are approximated by discrete values from the infinite alphabet 
{0, ±c, ±2c, • • •}, where c can be chosen to be arbitrary small. With such a channel alphabet 
the corresponding channel trellis will have an infinite number of states. However since the 
channel vector h does not vary over each signaling interval, as the data vector I, we need 
not consider all the levels of the possible channel parameters at a given instant. In order to 
reduce complexity, we propose a simple assignment scheme for the channel trellis. The next 
channel estimate h1+1, in the proposed scheme is given by 

hi+1 = hl    for state 0 

and 
ht+1 = hl ± c • ln    for state n = 1,2, • • •, 

where ln ia a vector of length L are either zeros or ones. For the special case when 1„ = 0, the 
degenerate state 0 results. Clearly the number of states2 does not depend on the parameter 
c but on the channel memory L. 

A smaller number of states can be used if the vector 1„ is restricted to be all zero, 
except for the element at the n th location to unity, is clear that the above state assignment 
results in L + 2 states. The branches emerging from all the states, except for state 0, have 
2 parallel transitions, one corresponding to an increment (+c) and the other to a decrement 
(—c). There are other state assignment schemes with less than 2L+1 states, but the above 
assignment will result in a simple trellis. 

The algorithm will proceed as follows: 

• 1. Start with initial channel estimate, \IML = h°. 

• 2. Use the VA to solve for 

IML = argmax/(r|I,hMi,), 

with the branch metric (r^ — 5Zj=i hilk-i) 

• 3. Use the VA to solve for 

hML = argmax/(r|iML,hML), 
h 

with the branch metric (r^ — ]Ci=i ^dk- 
2 

2The maximum number of states is 2L+1. 
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• 4. Iterate 2 and 3. 

It can be noticed that the algorithm achieves the ML estimate of the channel by adaptively 
incrementing or decrementing the previous estimate. Using the channel state table above, 
we change one channel parameter per transition. To improve the speed of convergence one 
can more states in the channel trellis, that allows one to change two or more parameters a 
time. This will significantly improve the rate of convergence on the expense of complexity. 

Thus one can compromise rate of convergence to complexity. 
Another parameter that affects the performance is the step parameter c. Choosing c 

smaller will reduce the rate of convergence, but will improve the error rate. This point is 

demonstrated in the following simulation example. 

III. SIMULATION RESULTS 

The algorithm described above was used to equalize the channel (assumed unknown) 

whose sampled impulse response is given by 

h(n) = 0.405 • 6(n) + 0.817 • 8(n - 1) + 0.407 • 8(n - 2), 

where <*)(■) is the Kronecker delta function. For simplicity binary transmission is assumed, 
so that L = 2, and therefore the channel and data trellises will have 4 states each. These 

trellises are shown in fig. 1. 
The channel was initialized to h° = (0 0 0). The bit error rate for four different values 

of c were determined by simulation. The bit error of the ideal MLSE (with known channel) 
was also determined. These are depicted in fig. 2. With c = 0.01, the error rate of the 
proposed algorithm closely follows that of the ideal MLSE. For larger values of c, the error 
rate deviates from the ideal case. However for c = 0.05 case there is less than 1 dB loss. 

The rate of convergence results are not shown due to space limitations. However as ex- 
pected the rate of convergence for the c = 0.01 case was the lowest among the four cases. 

IV. CONCLUSION: 

In this communication, a new algorithm for blind MLSE was proposed. This algorithm 
approximates the continuous level channel model by a discrete level one. A channel state 
assignment scheme was presented, that leads to a simple channel trellis. This together with 
a data trellis are used to find the joint ML channel and data estimates. 

The algorithm offers a good complexity versus performance tradeoff. One can compromise 
complexity for faster convergence rate and lower error rate. The rate of convergence depends 
directly on the parameter c. This paper considered using a constant step c, using a variable 
c would be valuable to acheive a higer rate of convergence. This point is currently pursued 

by the authors. 
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APPENDIX C: PART IV 

REDUCED-COMPLEXITY SEQUENCE ESTIMATIION 
USING STATE PARTITIONING 

by 
Raafat Kamel and Yeheskel Bar-Ness 

ABSTRACT 

A reduced-state sequence estimator for linear dispersive channels is described. The tech- 
nique is based on partitioning the set of all channel states in a way that defines a trellis 
with fewer states. The new technique generalizes trellises that were previously obtained 
by Duel-Hallen and Heegard, and Eyouboglu and Qureshi. While the approach followed 
by Duel-Hallen results in powers of two-state trellises, the new technique generates trellises 
with an arbitrary number of states. Using the state partitioning approach one could also 
generalize the trellises obtained by Eyouboglu. Therefore, the approach described in this 

paper provides a better performance/complexity tradeoff. 

I. INTRODUCTION 

In high speed digital transmission over bandlimited channels, one of the principal im- 
pairments, besides additive Gaussian noise, is intersymbol interference (ISI). Equalization 
is used to combat ISI. The type of equalization used to mitigate ISI can be divided into 
two classes. The first, symbol-by-symbol equalization, encompasses linear and decision feed- 
back equalization. The second involves maximum likelihood sequence estimation (MLSE) 
[1], where the Viterbi algorithm (VA) is used to search a trellis for the desired sequence. 

' While the first class has low complexity and a high error rate, the second has a lower 
error rate at the expense of complexity. The complexity of the VA grows exponentially with 
the length of the channel impulse response. When the impulse response becomes larger, the 
VA becomes impractical, and methods for complexity reduction are needed. 

Research has been directed toward obtaining reduced-complexity equalizers, while main- 
taining a performance as close as possible to MLSE. To reduce the complexity, a number of 
authors have proposed incorporating a linear or decision feedback preprocessor so that the 
MLSE will deal with an equivalent channel having a shorter impulse response [2] [3]. In [2], 
a linear equalizer was used to shorten the impulse response of the channel, while in [3] a 
DFE was used to truncate the length of the channel. Such approaches were found to limit 

the performance of the combined system. 
Eyuboglu and Qureshi [4], and Duel-Hallen and Heegard [5] have proposed sequence esti- 

mators which provide a good performance/complexity tradeoff. The reduced-state sequence 
estimation (RSSE) of [4] is useful for systems utilizing a large signal constellation, while the 
delayed decision-feedback sequence estimation (DDFSE) of [5], which is a special case of 
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RSSE, is suitable for channels with a long impulse response. 
In [4], trellises with reduced number of states are constructed. These states are formed by 

combining the states of the maximum likelihood estimator using Ungerboek-like set partition- 
ing principles. An ambiguity arises in the branch metric calculation due to the combination 
of the different states. A feedback detector is incorporated to resolve this ambiguity. 

In [5] the complexity of the VA is reduced by considering a few states of the channel. The 
ISI due to the rest of the states is estimated using a feedback detector analogous to that of 
the decision feedback equalizer (DFE). The estimated ISI is then used in the branch metric 
computation. As in the DFE, error propagation affects the performance of the algorithm. 
The degradation due to error propagation was found to be less than that of the DFE. 

In [6] a sequential algorithm; namely, the stack algorithm, used for decoding convolutional 
codes, is adapted to ISI channels. A metric suitable for ISI was derived in [6]. The stack 
algorithm offers an advantage in terms of computational complexity over the VA. This comes 
with an increase in stack and buffer storage. Reference [7] gives a good survey on different 
sequential decoding algorithms. 

In this paper, a new technique [8] is presented for reducing the complexity of the VA 
for channels with long memory and an arbitrary size signal constellation. The technique is 
closely related to [4] [5]. While [4] is suitable for a signal alphabet with large constellations 
and [5] is suited for channels with long memory, the new approach offers a unified approach 
to the problem of a large signal constellation with an arbitrarily long channel. It also offers 
more flexibility in the choice between performance and complexity than the one in [5]. It 
can generate trellises with any number of states rather than only power of M states as in 
[5], where M is the alphabet size. 

The approach described in this paper is motivated by the work on error propagation for 
the DFE given in [9]. Error sequences for the DFE can be modeled as a Markov chain, 
whose number of states is exponential in the number of distinct magnitudes of error and the 
number of past decisions that influence the current decisions. The complexity of the resulting 
systems is extremely high. To reduce system complexity Duttweiler, et al, [9] proposed a 
reduced state machine, wherein error sequences are grouped together in a unique manner. 
This grouping can also be envisioned as partitioning the set of all possible error sequences. 
This led to using a state partitioning technique to reduce sequence estimation complexity. 

This paper is organized as follows. In section 2, we present the channel model and 
introduce the partitioning approach for reducing the complexity of the VA for the binary 
transmission case. In section 3, we describe a general procedure to perform the suggested 
partitioning. An example is given in section 4. In section 5, we discuss the probability of 
error for the reduced complexity scheme. The technique is extended to complex non-binary 
modulation in section 6. Conclusions are given in section 7. 

II. CHANNEL MODEL AND THE PROPOSED TECHNIQUE 

We will consider channels with finite impulse response, whose discrete time model is given 
in Figure 1. This model arises in a quadrature amplitude modulation (QAM) system at the 
output of a sampled, whitened matched filter. Using the D transform, the channel h(D) is 
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modeled as a finite response filter (FIR), and n(D) is a white Gaussian noise source with a 
zero mean and variance of a2. The data sequence a(D) consists of symbols afe, which are 
independent and identically distributed. In this section we will assume binary transmission; 
extension to complex and non-binary modulation is deferred to section 6. The data symbols 
ak take values of ±1 with equal probability. Referring to Figure 1, the output y(D) is given 

by 
y(D) = a(D)h(D) + n(D), 

where h(D), given by h(D) =h0 + hxD + ■■■ + hnDn, defines the channel impulse response, 
whose degree, ra, is determined by the channel memory. The state of the channel, s(k), at 
time k is the binary n tuple given by (ak-i,ak-2, ■ • •, a*-n), the previous input data. At any 
time k there are 2n possible states. The set of all channel states is denoted by fi; i.e., 

0 = {si : Si is a state of the system , i = 0,1, • • •, 2n — 1}. 

In the proposed technique different states are combined into a smaller number of super- 
states. That is, the set ft is divided into N, Si, subsets, where N is 2 < N < 2", such 

that 

i. 1X0^ = 0 

2. Si n Sj = 0; the empty set, for i ^ j and 0 < i,j < N - 1 

3. The subsets Si are chosen such that for all sn(k)   G   Si, the corresponding next state 

sn(k + l) must belong to one subset. 

The first two conditions specify a partition on the set ft, and hence one could also specify 
an equivalence relation on 0. The third condition is a constraint on the partitions that 
enables a trellis to be defined. It can be shown that not every partition on tt could be a 
candidate; only those that result in a trellis are suitable. A procedure is devised for defining 
partitions that satisfy the third condition. This is detailed in section 3. 

At this point one should emphasize the difference between the partitioning considered in 
this paper and that in [4]. Therefore a brief description of the RSSE is in order. 

Consider a signal constellation, C, with M points, the state of the channel s(k) is given 
by an M-ary n tuple (ak-i, ak-2, • ■ • ,ak-n)- The RSSE [4] associates each element ak-u for 
1 < i < n, with a set partition C(i) of the constellation, in which the signal constellation 
is partitioned into J; subsets. The number of subsets J; ranges from 2 to M. In [4] the 
partition C(i) is chosen as a finer partition of C(i + 1) and J; > Ji+1 for 1 < i < n - 1. 
Using the constellation partitioning described in [4], the channel state s(k) is represented by 

a sub-state, defined by 
tk = [xfe_i(l), xfc_2(2), • • •, xk-n(n)], 

where Xk-i(i) is the subset to which the transmitted symbol ak_i belongs. Now since xk-i(i) 
can only assume one of J; possible values, the RSSE will have a total of n"=i Ji states as 
opposed to Mn original states. When Ji = M for 1 < ilel and Ji = 1 for I < i < n, RSSE 

becomes DDFSE. 
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The trellises generated by the DDFSE represent a subset of those obtained by the RSSE 
technique. By using the state partitioning approach described in this paper one can obtain 
more trellis choices. Consider the special case of a binary alphabet, the approaches followed 
in [4][5] will result in 2m-state trellises, m ranging from 1 to N. On the other hand the 
state partitioning approach could generate trellises with an arbitrary number of states not 

necessarily a power of two. 
The branch metric for the MLSE is given by (yk — YA=I ^iah-i — o-hf''■ Since each state 

in the reduced trellis is a union of two or more channel states, an ambiguity will result in 
the branch metric calculation. That is, the branch metric is no longer uniquely determined 
by the previous/present trellis states' pair. Similar to [4] [5], a feedback mechanism is in- 
troduced to resolve this ambiguity. The branch metric associated with the reduced trellis is 

given by (yk — Yll=i hia^-i — Xw+i ^iOfc-i — a*..)2, where / < m is determined by the reduced 
trellis. The previous state estimate (äk-i-i, • • •, äk-n) is stored in the path history associated 
with the present state. 

III. THE PARTITIONING PROCEDURE 

A partition P of a set 0 is a pairwise disjoint collection of non-empty subsets of O, whose 
union is O. It is known that an equivalence relation in Q defines a partition of fi, and, 
conversely, a partition in O yields an equivalence relation. Given an equivalence relation R 

in 0, let R(a) = {x £ 0 : aRx} for each a £ Ü. R(a) is known as an equivalence class 
of R and is a subset of Q. The collection of subsets, P = {R(a) : a £ 0}, is a partition 
of 0. A collection of equivalence relations {Ri7R2, ■ ■ ■ ,Rn} is known as an equivalence 
sequence iff for all i,j 1 < i < j < n, and all x,y £ fl we have xRjy =>■ xR{y. That is, 

Rn(x) C Rn-i(x) C • • • C Äi(x) C 0. 
For the channel model described in the previous section, the states of the channel are 

given by binary n tuples. Consider the relation Ri given by: xRiy iff the first i components 
of the n-tuples x and y are identical, for any states x and y £ 0. It can be shown that Ri is 
an equivalence relation. Therefore Ri defines a parition of Q. It can also be shown that the 
sequence {i?l5 R2, • • •, Rn} is an equivalence sequence. 

Figure 2 shows the partitions associated with different Ri and the corresponding subsets. 
Label the subsets corresponding to Ri, with binary i tuples. We refer to the partition formed 
by Ri as level i partition. It should be noted that there are T subsets at level i, each with 
cardinality 2n~\ The number of subsets in P will determine the number of states of the 
trellis, that is satisfy the third constraint. We will now show that the equivalence sequence 
{i?i, i?2i' " " , Rn} can define partitions that will result in a reduced complexity trellis. 

In order to show that the partitions associated with the above equivalence sequence 
satisfy the third constraint, we first present it in a mathematical form. 

Define two functions Fi(x) and F^\(x) as the next state of the channel, when the present 
state is x, and inputs are 1 and —1 respectively. That is, if x = (ai, a2, ■ • •, an), then 

Fi(x)    =   (l,ai, ■■■,an-i) 

and -F-i(z)    =    (-l,ai,---,an_i). 
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To meet the third condition, the equivalence relation R must satisfy 

xRy   =>   Fi(x)ÄFi(y) and 

=>   F_i(x)i?F_1(2/)    for all x and y G 0. (1) 

When the above statements are satisfied, the functions Fi(-) and F-i(-) are said to be 

compatible with R. Equation (1) can also be written as, 

for all x and y  G   0    y G R(x)    =>   F^y) G R^x)) and 

=»   F^^G^F-i^)). (2) 

3.1 Trellises with 2' States 

The partition P is formed by considering all the subsets from the zth level; in other words 
all the equivalent classes of the equivalent relation R,. We can now show that such partitions 
satisfy the third constraint, i.e., equations (1) or (2). Consider the equivalence relation Rf, 
the set {Fi(y) : y G Ri(x)} for some x G Ü is the set of all channel states that have the 
first i + 1 components identical. The first element is 1 and the consecutive i elements are 
identical, since the previous state y G Ri(x) . Therefore, one can write: 

{F1(y) : y e Ri{x)}    =   Ri+i^x)) 

C   RiiFrix)). 

The second step follows from the definition of an equivalence sequence. Therefore, it can be 

concluded that 

xRiy   =*   F1{x)Ri+1F1{y) (3) 

Therefore =>   F^fyF^y) for all x and y G 0. (4) 

A similar argument holds for F_i(-); that is, 

xRiV   =>   F-xWRi+tF-iiy) and (5) 

==»   F-i(x)RiF-i(y)    for all x and y G fi. 

Comparing with equation (1), we conclude that the equivalence relation Ri defines a parti- 
tion which satisfies the third condition and would result in a trellis. Since the equivalence 
relation Ri partitions the set Ü into 2! subsets, the resulting trellis will have 21 states. It 
should be mentioned that these trellises are the same as those found by Duel-Hallen, et al. 
[5] On the other hand, as will be shown in the next section, by using the state partitioning 
technique, one can find trellises with any number of states, rather than only power of 2. 
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3.2 Trellises with Number of States not 2s 

In this case the partition P is formed by considering subsets from adjacent levels, instead 
one level as in the previous section. This can be done by considering some level i subsets 
and the remaining subsets are replaced by their corresponding subsets from level i + l. This 
will satisfy the first two conditions given in section 2. To satisfy the third condition one has 
to meet two requirements: 

1. For all x and y 6 fi 

xRiy   =^   F^RiF^y)     if     fij(Fi(i)) 6 P or (6) 

=>•   Fi(x)Ri+iFi(y)     otherwise (7) 

2. For all x and j/GO 

xRi+1y   =$►   F1(x)Ri+1F1(y) ii Ri^iF^x)) € P or (8) 

=►   F^RiFjiy)     otherwise . (9) 

F-i(x) has to satisfy similar requirements. 
The requirements given in (6) and (8) follow from equation (4). Condition (7) also follows 

from equation (4). Now since 

Fi(x)Ri+iFi(y) =>• Fi(x)RiFi(y)     from definition of equivalence sequence, 

and 
xRi+iy =>• Fi(x)Ri+iFi(y)     from equation (4) , 

it follows that 
xRi+1y =$■ F1(x)RiF1(y), 

and (9) is satisfied. A similar argument holds for F-i(x). Therefore, the partition P formed 
by considering subsets from two adjacent levels results in a trellis. The number of states of 
such a trellis will not be a power of 2. 

It is worth mentioning that partitions formed by subsets from non-adjacent levels will 
not form a trellis since (7) will not be satisfied. In fact, 

xRiy   =4>   Fi(x)RjFi(y) and 

=4>   F^i(x)RjF^(y)    for all x and y G O 

is true only for j = i + 1. 

IV. AN EXAMPLE 

Consider the channel given by 

h(D) = h0 + hD + h2D
2 + h3D

3. (10) 
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The above channel has a memory of n = 3; therefore, the state can be represented by binary 
3 tuples x = (xi,x2,x3). One can use up to three levels of partitioning, or the equivalence 
sequence {Ru R2, Rs}- Using the notation in section 3, Table 1 gives different partitioning 
schemes. Consider the 5-state trellis given in Table 1. The set of all states 9, is partitioned by 
considering subsets Ä2(01), Ä2(1,0) and i22(l, 1) from level 2 and instead of subset i?2(0,0) 

we consider its subsets i?3(000) and Ä3(001) from level 3.  Note that there are (  3 j = 4 

possible trellises with 5 states. The last entry in Table 1 is the full complexity case of 8 states. 
The branch metric depends on the originating node of a given branch. If the originating 
node of a branch corresponds to a subset from level I (I < n), then the branch metric ~/k is 

given by 

7fc = (Vk - X) ^ak-i -  Yl hiäk^i)2. (11) 

The trellises for the partitioning schemes considered in Table 1 are given in Figure 3. 

V. PROBABILITY OF ERROR 

In this section we will investigate the error performance of the partitioning schemes de- 
veloped in section 3. It was noted in [4] [5] [10] that the effect of the error propagation is 
minimal for moderate to high SNR. Therefore, we will assume in our derivation that the 
effect of error propagation is negligible. In the sequel we will consider trellises with powers 
of two states, from which other trellises will be derived. 

5.1 Trellises with T States 

These trellises are the same as those derived in [5], and hence the analysis given in [5] 
applies here. Nevertheless, we will relate the probability of error to different partitioning 
levels. This will be vital for the analysis of trellises with an arbitrary number of states. 

Consider the trellis formed by the subsets from level i. As noted earlier, the resulting 
trellises will have 2* states, which are represented by the binary i tuple. Consider the channel 
at time k, the channel state is s(k); Si(k) = (ak-i,ak-2, ■ • •, "k-i), let the corresponding state 
estimated by the VA be denoted by s.-(fc), !;(&) = {äk-i,äk-2, • ■ ■ ,a*-0- Following Forney's 
approach [1], an error event £ is said to occur between k = kx and k — k2, if s;(&i) = s,-(&i), 
Si(k2) = Si{k2) and Si(k) ^ s.-(fc) for all k, h < k < k2. Since Si(k) = Si(k) for k = ku fc2, it 

follows that 

(öit1-l,öi1-2,--,,ß)ti-i)     =      (afci-l,öfci-2,- • • ,ßfci-i) 

and 

(äk2-i,äk2-2,- ■ ■ ,äk2-i)   =    (ö(:2-I,ö)C2-2,- • • , afc2-i)- 

Now dehne the input error sequence associated with the event 5, by 

e = K,^+i,' • • ,efc2_i_i}, 
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where e^ = a^ — a^. The Euclidean distance d?(£) of the error event is given by 

2 
&2      /min(k—ki ,i) x 

%V) = E     E   V*-;   • (i2) 
fc=fci   \        3=0 J 

In the case of binary transmission, the probability of error is upper bounded by [l] 

P'<T,Q(£) '£ -(e)2~ 

where E^, is the set of all error events having a Euclidean distance of d\ and D is the set of 
square roots of Euclidean distances attained by error events. The factor w(e) is the number 
of bit errors a given error event entails, and Q(-) is given by 

For moderate to high SNR the upper bound of the probability of error is dominated by 
events attaining the minimum distance, i.e., 

where K{ is given by 

Pe < KiQ {^\ , (13) 

Ki=     £     w(e)2~w^. (14) 

Note that we used the subscript i throughout to emphasize the dependence of terms like 
dimin and K{ on the level of partitioning i. Therefore, to evaluate the upper bound on the 
probability of error for a given level, one has to determine dimin and K{. 

At lower SNR one can get better bounds by considering the stack algorithm given in 
[10]. However, with the stack algorithm one has to first find the error state diagram. The 
complexity of such a diagram becomes intractable for channels with a long impulse response. 
Therefore, we will only consider events with minimum distances. 

5.2 Trellises with Number of States not 2l 

We showed in section 3 how to form trellises by considering subsets from adjacent levels 
rather than from one level. Examples of these trellises were given in section 4. 

To find an upper bound on the probability of error for these trellises, we consider without 
loss of generality the trellis formed by subsets from levels i and i + 1. Furthermore assume 
that the trellises are formed by considering p subsets from level i and q from level i + 1 in 
such a way that the third constraint given in section 2 is satisfied.   At moderate to high 

172 



SNR, using the total probability theorem, the probability of error of such a scheme can be 
upper bounded by 

ft < §*,<? (^) + ^K,»Q (*^) . (15) 

It can be easily shown that for q = 0 the upper bound for level i results, while for p = 0 
that of level i + 1 results. Note that in equation (15) the first term dominates asymptot- 
ically, since d{min < ^i+imm- That is, at high SNR the first term in equation (15) is more 
dominant than the second. Therefore, the performance of such a trellis would be the same 
as that of level i at sufficiently high SNR. However, at moderate SNR, the performance of 
these trellises is better than those with 2l states, i.e., trellises formed by considering subsets 
from level i only. This point is demonstrated in the following example. The improvement in 
performance becomes more pronounced for longer channels. 

5.3 Simulation and Upper Bounds 

As an example, consider the channel whose impulse response is given by 

h(n) = 0.7107-6(n)+0.1421-6(n-l)±0.2132-<5(n-2)+0.1421-<5(n-3)±0.6396-£(rc-4).  (16) 

The above channel has a memory of n = 4; therefore, the states can be represented by binary 
4 tuples x = (#1, x2, x3, X4). One can use up to four levels of partitioning, or the equivalence 
sequence {R\, R2, R3, -fiU}- We will consider the trellises formed by the equivalence relations 
i?3 and R4. Using the same notation as above, Table 2 gives some schemes we considered in 
the simulation and computation of the upper bounds. 

For level 4, the error sequences that have minimum distance are ±(2,0,0,0,0), and for 
level 3 these sequences are ±(2,0,0,0). The simulation results and the upper bounds are 
shown Figure 4. Referring to Figure 4, there is less than a 2dB loss when considering the 
8-state instead of the 16-state trellis. As expected with 12- and 14-state trellises the prob- 
ability of error is better than the 8-state. The amount of improvement decreases as SNR 
increases. At high SNR the improvement becomes insignificant; that is, the 12- and 14-state 
trellises approach the 8-state performance. 

VI. NON-BINARY MODULATION 

In this section the concept of state partitioning is extended to include non-binary mod- 
ulation schemes. The state s(k) is represented by an M-ary n tuple (afc_i,a^_2, • • • , afc_n), 
where a^ is an M-ary symbol given by 

-(M - 1) • d, ■ ■ ■, -d, d, • • • (M - 1) • d     for M-PAM 

au = < 
xk + JVk, where Xk and y^ take values 
-(f - 1) • d, ■ ■ ■, -d, d, ■ ■ ■, (f - 1) • d    for M-QAM 

[ dexp(§i), i = 0,1, • • •, M - 1 for MPSK, 
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where d is a function of the transmitted power. The number of states in this case is given 
by Mn. Thus the set of channel states tt has a cardinality of Mn. 

Following a similar procedure as in section 3, the equivalence sequence {R\1 ■ ■ ■, Rn} is 
used, where R{ is again defined as xRiy iff the first i components of the n-tuples x and y 
are identical for all x and {/£(!. The partitioning tree in this case will have M branches 
emerging from each node. Reduced complexity trellises can be constructed by considering 
subsets or union of subsets from different levels. This is best illustrated by the following 

example. 
Consider the transmission of a 4-QAM source (Figure 5) through a channel whose impulse 

response is given by 

h(D) = h0 + hD + h2D
2 + h3D

s. 

In this case the channel has 43 = 64 states. Since the memory of the channel is 3, the parti- 
tion tree can have up to 3 levels. The partitioning tree is shown in Figure 6. Trellises with 
different numbers of states can be constructed using the subsets shown in Figure 6. Table 3 
lists some of these trellises. Table 3 also indicates an RSSE-type trellis with the same number 
of states, if they exist. Those given in the table were arbitrarily chosen. Since the channel 
has a memory of three, for the RSSE we need to specify three parameters (Jls J2, J3), which 
are given in Table 3. As with the state partitioning technique there could be more than an 
RSSE-type trellis for a given number of states, an arbitrary one is given in the table. For 
illustration purposes consider the 8-state case. In Figure 7a we present the trellis obtained 
using the state partitioning approach, which is the same the RSSE trellis [4] which is de- 
picted in Figure 7b. For the trellis shown in Figure 7b, we used J\ = 4, J2 = 2 and J3 = 1. 
It can be seen from Table 3 that the state partitioning approach results in a wider range of 
trellises than with the RSSE. As a result it offers a better performance/complexity tradeoff 
compared to the RSSE. No attempt has been made to compare the distance properties of 
these trellises, since we just intended to show the existence of a wider range of trellises, some 
of which could not be produced by the RSSE [4] approach. 

VII. CONCLUSION 

In this paper we introduced a new approach to reduce the complexity of the VA. This 
approach is based on partitioning the set of channel states. It also a offers good complexity 
versus performance tradeoff. It was shown that the trellises obtained in [5] and [4] are special 
cases of those described in this paper. 

The state partitioning approach results in trellises with an arbitrary number of states 
which are not necessarily powers of 2 states, as in [5] for a binary signal set. Depending on 
the length of the channel and the operating SNR, trellises with non-power of 2 states can 
attain a lower probability of error than the powers of 2. However, at high SNR the improve- 
ment of the former over the latter is insignificant. The technique can also be extended to 
include complex and non-binary signal sets. 
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a(D) 
h(D) 

n(D) 

y(D) 

Figure 1: The discrete channel model 

Level 1 

Level  2 

Level  3 
R3(000)     R3(001)     R^OIO)    R3(011)     RpOO)     R3(101)     R/110)     R3(m) 

Figure 2: The partitioning tree for a binary source 

Figure 3: Trellises for the schemes given in Table 1 
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Upper bound 
8 -state 
12-state 
14-state 
16-state 

0.0001 12 
N0 dB 

Figure 4: Probability of error for different partitioning schemes 

•   d 

•   c 

•   a 

•   b 

Figure 5: Constellation for 4-QAM. 

Level 1 

Level 2 

Level 3 

a = d<l+j) 

b = d-(l-j) 

c = d<-l-j) 
d = d-(-l+j) 

R^'aV/KR^a,b) R(,a,c) R(,a,d)      R(,b,a) R£> ,b) R(,b,c) R|b,d)      R(c,a) Rj^b) Rff.c) R^c.d)      R^d,a) R(,d,b) 

R(a,a,a)R(a,a,b)R(w:)R£a,a,d) Jw"    3 3 3 

Figure 6: Partitioning tree for a channel with a memory of 3 and a 4-QAM source. 
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R(a,a)   U   R(a,c) 
2 2 

R2(a,b)   U   R2(a,d) 

R2(b,a)   U   R2(b,c) 

R^.b) U R2(b,d) 

R,(c,a) U R,(c,c) 

R2(c,b) U R^c.d) 

R^a) U lyd.c) 

R^d.b) U R/d.d) 

Figure 7: (a) The 8-state trellis obtained using the state partitioning approach, (b) The 
8-state trellis obtained using RSSE [4]. 

Number of States Partitions 
2 {R^Riil)} 
3 {Ä1(0),Ä2(10),Ä2(11)} 
4 {#2(00),#2(01),#2(10),#2(11)} 
5 {#3(000),#3(001),#2(01) 

#2(10),#2(11)} 
6 {#3(000),#3(001),#2(01) 

#2(10),#3(110),#3(111)} 
7 {#3(000),#3(001),#2(01) 

#3(100), #3(101), #3(110), #3(111)} 
8 {#3(000), #3(001), #3(010), #3(011) 

#3(100), i?3(101), #3(110), #3(111)} 

Table 1: Different partitions for a channel with a memory of n = 3. 
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Number of States Partitions 

8 {#3(000), #3(001), #3(010), #3(011) 
#3(100), #3(101), #3(110), Ä3(1H)} 

12 {#3(000),#3(001) 
#4(0100), #4(oioi), #4(ono), #4(0111) 
#4(1000), #4(1001), #4(1010), #4(1011) 

JR3(110),i?3(lll)} 
14 {#3(000),#4(0010),#4(0011) 

#4(0100), #4(0101), #4(0110), #4(0111) 
#4(iooo), #4(1001), #4(1010), #4(1011) 
#4(1100), #4(1101), #3(111)} 

16 {#4(0000), #4(0001), #4(0010), #4(0011) 
#4(oioo), #4(0101), #4(0110), #4(0111) 
#4(iooo), #4(1001), #4(1010), #4(1011) 
#4(1100), #4(noi), #4(1110), #4(1111)} 

Table 2: Selected partitions for a channel with a memory of n = 4 
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# of States Partitions RSSE (Jx,J2,J3) 

2 {JR1(a)UJR1(c),i?1(6)Ui?1(d)} (2,1,1) 
3 {^(0)^(6) UÄx^^xCc)} (3,1,1) 
4 {^(0)^(6), Ä!(C),  Ä!(d)} (2,2,1) 

5 {R2(a, a), Ä2(a, ft), Ä(a, c), i?(a, d) 

JR1(6)UJR1(c)U7?1(^)} 
does not exist 
for RSSE 

6 {i?2(a, a), ^2(a, 6), i?(a, c), R(a, d) (3,2,1) 

7 {R2(a, a), R2{a, b), R(a, c), R(a, d) does not exist 
for RSSE 

8 {R2(a, a) U R2(a, c), R2(a, b) U R2(a, d) 
R2(b, a) U R2(b, c), £2(6, 6) U R2(b, d) 
R2(c, a) U £2(c, c), Ä2(c, 6) U R2(c, d) 
R2(d, a) U R2(d, c), i?2(rf, 6) U R2{d, d)} 

(4,2,1) 

10 {R2(a, a), i?2(a, 6), #2(0, c), Ä2(a, i) 
Ä2(c, 6), i?2(c, 6), J?2(c, c),R2(c, d) 
Ri(b),R1(d)} 

does not exist 
for RSSE 

12 {R2(a, a), R2(a, b), R2(a, c),R2(a, d) 
R2(b, a) U R2{b, 6), i?2(6, c) U i?2(6, d) 
R2(c, a), R2(c, b), R2(c, c), R2(c, d) 
R2(d, a) U R2(d, b), R2{d, c) U R2{d, d)} 

(4,3,1) 

14 {R2(a, a),R2(a, 6), R2(a, c), i?2(a, d) 
R2(b,a),R2(b,b),R2(b,c),R2(b,d) 
R2(c, a),R2(c, 6), Ä2(c, c), Ä2(c, d) 
i?2(d, a) U R2{d, c), i?2(d, 6) U R2(d, d)} 

does not exist 
for RSSE 

16 {R2(a, a), R2(a, 6), i?2(a, c), J?2(a, d) 
R2(b,a),R2(b,b),R2{b,c),R2(b:d) 
R2(c, a), R2(c, b), R2(c, c), R2(c, d) 
R2{d, a), R2(d, b), R2(d, c), R2(d, d)} 

(4,4,1) 

64 {R3(a,a,a),- ■ ■ ,R3(d,d,d)} (4,4,4) 
Table 3: Different partitions for a channel with a memory of n=3 and a 4-QAM source. 
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